Line 108: | Line 108: | ||
− | + | <h4>START SELEX CICLE</h4> | |
<h4 class="tittlelist">Prepare the library pool</h4> | <h4 class="tittlelist">Prepare the library pool</h4> | ||
<li class="nomargin"> <p class="lead">Resuspend 2 nmol de la library pool on 200 µl of Binding Buffer (Tris-HCl PH= 7,4 20 mM; MgCl21mM; NaCl 150mM; KCl 5 mM).</p></li> | <li class="nomargin"> <p class="lead">Resuspend 2 nmol de la library pool on 200 µl of Binding Buffer (Tris-HCl PH= 7,4 20 mM; MgCl21mM; NaCl 150mM; KCl 5 mM).</p></li> | ||
Line 153: | Line 153: | ||
<p class="lead nomargin"><spam class="green">PAUSE POINT</spam>: You can store the DNA at -20ºC </p> | <p class="lead nomargin"><spam class="green">PAUSE POINT</spam>: You can store the DNA at -20ºC </p> | ||
<p class="lead nomargin"><spam class="purple">ADVICE</spam>: If you always have secondary bands, it means that concatemers are forming in your PCR reactions. Consider reducing the template and/or the cycles you are performing.</p> | <p class="lead nomargin"><spam class="purple">ADVICE</spam>: If you always have secondary bands, it means that concatemers are forming in your PCR reactions. Consider reducing the template and/or the cycles you are performing.</p> | ||
− | <p class="lead nomargin"><spam class="purple">ADVICE</spam>: Select the rounds that have the maximum amount of DNA that fits to your needs without secondary bands. Its more important to have the correct purity if you already are going to have the necessary amount. If secondary structures are always forming in your PCR, consider purifying the correct bands from your gel with a kit | + | <p class="lead nomargin"><spam class="purple">ADVICE</spam>: Select the rounds that have the maximum amount of DNA that fits to your needs without secondary bands. Its more important to have the correct purity if you already are going to have the necessary amount. If secondary structures are always forming in your PCR, consider purifying the correct bands from your gel with a kit.</p> |
Line 159: | Line 159: | ||
<li class="nomargin"> <p class="lead">Prepare a 200 µL PCR. Use as template 2 µL of the library amplified before and a final primer concentration of 0.8 µM..</p></li> | <li class="nomargin"> <p class="lead">Prepare a 200 µL PCR. Use as template 2 µL of the library amplified before and a final primer concentration of 0.8 µM..</p></li> | ||
<li class="nomargin"><p class="lead">Use the same programme but with the cycles chosen before</p></li> | <li class="nomargin"><p class="lead">Use the same programme but with the cycles chosen before</p></li> | ||
− | <li class="nomargin"> <p class="lead">Perform a new electrophoresis gel to ensure that the amplification was successful. Purified the DNA and stored it at -20ºC. </p></li> | + | <li class="nomargin"> <p class="lead">Perform a new electrophoresis gel to ensure that the amplification was successful. Purified the DNA and stored it at -20ºC.</p></li> |
+ | |||
+ | <h4>END SELEX CICLE</h4> | ||
+ | <p class="lead">If the cicle is mutiple of 3, do the qPCR (explaind in the next step).</p> | ||
+ | |||
</ol> | </ol> | ||
+ | </div> | ||
+ | </li> | ||
+ | <li> | ||
+ | <div class="tab__title"> | ||
+ | <span class="h5">qPCR</span> | ||
+ | </div> | ||
+ | <div class="tab__content"> | ||
+ | <h3>qPCR</h3> | ||
+ | <p class="lead nomargin">Bill Of Materials: You could see a complete BoM here (upload the bill).</p> | ||
+ | <p class="lead nomargin">Amount of time: 4 hours.</p> | ||
+ | <p class="lead nomargin">Total costs: ? €.</p> | ||
+ | <ol class="ourlist"> | ||
+ | <li class="nomargin"> <p class="lead">Prepare a 1:10 dilution of each round you want to check.</p></li> | ||
+ | <p class="lead "><spam class="purple">ADVICE</spam>: If one of the rounds is very concentrated, make a 1:10 and a 1:100 dilution of it.</p> | ||
+ | <li class="nomargin"><p class="lead"></p></li> | ||
+ | <img alt="Image1" src="https://static.igem.org/mediawiki/2018/9/90/T--Madrid-OLM--Experiments--Protocols_--Aptamers--qPCRtable1.jpg" /> | ||
+ | <p class="lead nomargin"><spam class="red">CAUTION</spam>: qPCR are extremely sensible. To avoid pipetting errors, make the mixture, except the template, multiplying x 1,5 your number os samples (including duplicates).</p> | ||
+ | |||
+ | </ol> | ||
</div> | </div> | ||
</li> | </li> | ||
Line 169: | Line 192: | ||
<div class="tab__content"> | <div class="tab__content"> | ||
<h3>PCI Extraction and ethanol precipitation</h3> | <h3>PCI Extraction and ethanol precipitation</h3> | ||
+ | <p class="lead nomargin">Bill Of Materials: You could see a complete BoM here (upload the bill).</p> | ||
+ | <p class="lead nomargin">Amount of time: 2 dias</p> | ||
+ | <p class="lead nomargin">Total costs: ? €.</p> | ||
<ol class="ourlist"> | <ol class="ourlist"> | ||
<h4 class="tittlelist">PCI Extraction:</h4> | <h4 class="tittlelist">PCI Extraction:</h4> | ||
Line 194: | Line 220: | ||
<div class="tab__content"> | <div class="tab__content"> | ||
<h3>Quiagen Purification</h3> | <h3>Quiagen Purification</h3> | ||
+ | <p class="lead nomargin">Bill Of Materials: <a href="https://www.qiagen.com/us/shop/sample-technologies/dna/dna-clean-up/qiaquick-pcr-purification-kit/#orderinginformation"> this link.</a> .</p> | ||
+ | <p class="lead nomargin">Amount of time: 1 hour</p> | ||
+ | <p class="lead nomargin">Total costs: 100 €.</p> | ||
<ol class="ourlist"> | <ol class="ourlist"> | ||
<li class="nomargin"> <p class="lead">Add 5 volumes of Buffer PB to 1 volume of the PCR sample, and then mix. It is not necessary to remove mineral oil or kerosene. For example, add 500 μl of Buffer PB to 100 μl PCR sample (not including oil). </p></li> | <li class="nomargin"> <p class="lead">Add 5 volumes of Buffer PB to 1 volume of the PCR sample, and then mix. It is not necessary to remove mineral oil or kerosene. For example, add 500 μl of Buffer PB to 100 μl PCR sample (not including oil). </p></li> |
Revision as of 09:51, 13 October 2018
Aptamer's Protocols
Texto de explicacion/ resumen de la pagina.
Aptamer Characterization
Aptamer electrode
Sinthesis of the electrode
Bill Of Materials: You could see a complete BoM here (upload the bill).
Amount of time: 2 day
Total costs: calcular con BoM
-
We choose Dropsens as our provider, because they are one of the standards in the field, and they are relatively near to our laboratory.
The material of the working electrode was choose as carbon, modified to include gold nanoparticles. The carbon have better electrochemical window than gold or silver (check this post for more information) and gold are the ideal substrate to join DNA (It only have to be thiolated).
-
Between the DNA and its thiolation in its 5’, we have include a 6 carbon chain after the thiol modification and 15 thymes before the aptamer sequence. The purpose of this modifications was to separate the aptamer from the electrode surface aiming to ensure enough conformational flexibility of the molecule.
We have order the aptamers to Integrated DNA Technologies as they are one of the competition sponsors.
-
[Optional] Depending on your electrodes, it needs to be pre-treated to ensure the correct aptamer binding. For this purpose pipette 50 uL of H2SO4 0.5M until the electrode are covered and perform 10 cyclic voltammograms from 0V to 1.25V at 100 mV/s of scan rate.
Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.
Follow the protocol to structure the aptamers in their individual binding buffers. If you have follow our SELEX protocol, check the buffers and their own structuration steps in this protocol. Make sure that you have enough concentration for the next step.
Drop 10 uL of the 5uM solution of aptamer in its own Binding Buffer (if you have selected the aptamer with our protocol check the SELEX protocol) above the working electrode.
Incubate overnight in an humidity chamber.Incubate overnight in an humidity chamber.
Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.
To remove the excess of DNA, treat the electrodes with 10 uL of β-Mercaptoethanol for 50 minutes in a humidity chamber.
Wash the electrodes three times with deionized water and let them dry under an extraction hood air flow.
-
First of all you must calibrate the ideal concentration of the electrode donor solution. For this purpose ferricyanide redox couple (K3Fe(CN)6and K4Fe(CN)6) was used above a raw electrode without aptamer. After our experiments the optimal concentration was found to be 5mM of each chemical in a 0.1 KCl solution.
Cover the electrode with a ferricyanide droplet and connect it to the potentiostat.
Run a preliminar cyclic voltammetry test with a stardart parameters. The ones that have fits better with our hardware (Rodeostat) was one cycle from -0.3V to 0.3V, with a current limit of 1000 uA, a sample rate of 100 Hz and a scan rate of 0.05 mV/s.
After the test have finished, adjust the parameters (voltage range and current limit) to fit the complete curve in your range. A typical Cyclic Voltammetry curve may have a shape similar to a duck.
Once you have calibrated the test for raw electrode is time to compare the results between itself and the electrode with aptamer bonded. If your binding process have succeed you must find a decreasement between the current peak of the electrode with aptamers compared to the raw one. This decreasement is proportional to the quantity of aftamer bonded to the electrode surface as they are obstructing the electrons flow through the electrode surface.
To calibrate the minimum quantity of aptamer that you need to achieve your detection limits, you may carry out the same experiment but with different concentrations of the aptamer. At the end of this experiment you will be able to correlate the quantity of the aptamer bonded to your electrode with the cyclic voltammetry peak.
Now your electrode is prepared to test it with your protein. You may set an incubation time and temperature depending on the individual interaction between each aptamer and protein. There is no protocol here. This will be a part of your individual results and its your work from now to adapt this protocol to your individual case. If your experiment succeed you will see a decreasement of current in the electrode with higher concentrations of aptamers. To see the outcome of our experiments check the results in the device section.
-
If after the measurement you can’t see any kind of signal or your noise is too high compared to the signal the problem may be caused by different sources. You should analyze the following things:
-
Check if you don’t have enough current (current under 30 uA in Rodeostat) or you have current but so much noise. In the first case you should check the wiring because your circuit isn’t close. In the second case you should check possible noise sources near your system (like magnets or fluorescent lights).
Check if in the electrode are appearing air bubbles when you run the measurement. This is a symptom of a wrong electrode connection. Check if you haven’t switch the connections of reference and counter electrode.
If no current decreasing have achieve in the electrode with aptamers compared to the raw electrode check if you have followed correctly reduced the aptamers before following the binding protocol. Also check the concentration of aptamers that you have cast above the electrode.
Selecting the electrode
There are so many scaffolds to join the Aptamers (or the DNA). Our choice was based on the kind of measuring hardware that we have used, a potentiostat. For this variety of measuring system you need a 3-electrodes system (working, reference and counter electrodes). The other parameters of the electrode was choose as follows:
Ordering the DNA
To run the first Proof of Concept we ordered a commercial Thrombin aptamer. Some tips have been took into account for the aptamer adaptation to electrode binding: