Difference between revisions of "Team:Pasteur Paris/Membrane"

Line 52: Line 52:
 
         <div id="MainContent">
 
         <div id="MainContent">
 
             <div class="block title">
 
             <div class="block title">
                 <h1 id="Introduction">INTRODUCTION</h1>
+
                 <h1 id="Introduction">MEMBRANE</h1>
 
                 <p><i>When manipulating genetically engineered organisms, it is crucial to guarantee the confinement of these organisms. In our case, we want the genetically modified bacteria to stay at the interface between the prosthesis and the external organic medium. At the same time, one of the main issues our project wants to tackle is the conduction of the neuron influx to the prosthesis. The answer to these questions came as a double solution: confinement of the bacteria by conductive nanoporous membranes. The membrane’s nanoporosity allows substances produced by our modified biofilm to pass through the membrane, but the bacteria remain confined. We tested the conductivity and biocompatibility of two types of membranes.</i></p></div>
 
                 <p><i>When manipulating genetically engineered organisms, it is crucial to guarantee the confinement of these organisms. In our case, we want the genetically modified bacteria to stay at the interface between the prosthesis and the external organic medium. At the same time, one of the main issues our project wants to tackle is the conduction of the neuron influx to the prosthesis. The answer to these questions came as a double solution: confinement of the bacteria by conductive nanoporous membranes. The membrane’s nanoporosity allows substances produced by our modified biofilm to pass through the membrane, but the bacteria remain confined. We tested the conductivity and biocompatibility of two types of membranes.</i></p></div>
 
             <div class="block two-third center">
 
             <div class="block two-third center">
Line 58: Line 58:
 
                 <div class="legend"><b>Figure 1: </b>Bacteria + Conductive Nanoporous Membrane = Confined Bacteria</div>
 
                 <div class="legend"><b>Figure 1: </b>Bacteria + Conductive Nanoporous Membrane = Confined Bacteria</div>
 
             </div>
 
             </div>
             <div class="block separator-mark"></div>
+
              
  
  
Line 67: Line 67:
 
                 <div class="block hiddenContent">
 
                 <div class="block hiddenContent">
 
                     <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                     <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
            <div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div>
+
                <div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div>
            <div class="block full">
+
                <div class="block full">
                <p>Sterlitech Polycarbonate Gold-Coated Membrane Filters were the first membranes we tested. The pores have a diameter of 0.4 micrometer, which is small enough to confine <i> Escherichia coli </i> bacteria, which diameter and size are respectively about 1 micrometer and 2 micrometers. These membranes were relatively easy to manipulate with a forceps because of their high flexibility.</p>
+
                    <p>Sterlitech Polycarbonate Gold-Coated Membrane Filters were the first membranes we tested. The pores have a diameter of 0.4 micrometer, which is small enough to confine <i> Escherichia coli </i> bacteria, which diameter and size are respectively about 1 micrometer and 2 micrometers. These membranes were relatively easy to manipulate with a forceps because of their high flexibility.</p>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/e/e7/T--Pasteur_Paris--Gold-membrane.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/e/e7/T--Pasteur_Paris--Gold-membrane.jpg">
                <div class="legend"><b>Figure 2: </b>Gold-Coated Membrane</div>
+
                    <div class="legend"><b>Figure 2: </b>Gold-Coated Membrane</div>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/1/15/T--Pasteur_Paris--Gold-membrane-micro.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/1/15/T--Pasteur_Paris--Gold-membrane-micro.jpg">
                <div class="legend"><b>Figure 3: </b>Gold-Coated Membrane (Electron Microscope)</div>
+
                    <div class="legend"><b>Figure 3: </b>Gold-Coated Membrane (Electron Microscope)</div>
            </div>
+
                </div>
  
            <div class="block title"><h3 style="text-align: left;" id="Polymer">Polymer-coated membranes</h3></div>
+
                <div class="block title"><h3 style="text-align: left;" id="Polymer">Polymer-coated membranes</h3></div>
            <div class="block full">
+
                <div class="block full">
                <p>The other membranes were Sterlitech Alumina Oxide Membrane Filters with 0.2 micrometer pores. Their higher rigidity compared to the gold-coated membranes led to several membranes being broken while manipulating them with a forceps. We used these membranes as a support for different conductive and biocompatible polymers: PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), PEDOT:Cl and PEDOT:Ts. </p>
+
                    <p>The other membranes were Sterlitech Alumina Oxide Membrane Filters with 0.2 micrometer pores. Their higher rigidity compared to the gold-coated membranes led to several membranes being broken while manipulating them with a forceps. We used these membranes as a support for different conductive and biocompatible polymers: PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), PEDOT:Cl and PEDOT:Ts. </p>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/8/83/T--Pasteur_Paris--Alumina-oxide-membrane.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/8/83/T--Pasteur_Paris--Alumina-oxide-membrane.jpg">
                <div class="legend"><b>Figure 4: </b>Alumnia Oxyde Membrane in grey</div>
+
                    <div class="legend"><b>Figure 4: </b>Alumnia Oxyde Membrane in grey</div>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/f/f7/T--Pasteur_Paris--Alumina-oxide-membrane-micro.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/f/f7/T--Pasteur_Paris--Alumina-oxide-membrane-micro.jpg">
                <div class="legend"><b>Figure 5: </b>Alumnia Oxyde Membrane in grey (electron microscope)</div>
+
                    <div class="legend"><b>Figure 5: </b>Alumnia Oxyde Membrane in grey (electron microscope)</div>
            </div>
+
                </div>
            <div class="block full">
+
                <div class="block full">
                <p>For PEDOT:PSS, an aqueous solution of PEDOT:PSS was prepared ([1]) and alumina oxide membranes were dipped for 24 hours in this solution. Electron microscopy of the membranes before and after the experiment showed the deposit of a substance on their surface; however its nature has not been tested.</p>
+
                    <p>For PEDOT:PSS, an aqueous solution of PEDOT:PSS was prepared ([1]) and alumina oxide membranes were dipped for 24 hours in this solution. Electron microscopy of the membranes before and after the experiment showed the deposit of a substance on their surface; however its nature has not been tested.</p>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/a/ab/T--Pasteur_Paris--PEDOT-PSS-membrane.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/a/ab/T--Pasteur_Paris--PEDOT-PSS-membrane.jpg">
                <div class="legend"><b>Figure 6: </b>PEDOT:PSS-coated membrane</div>
+
                    <div class="legend"><b>Figure 6: </b>PEDOT:PSS-coated membrane</div>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/b/b5/T--Pasteur_Paris--PEDOT-PSS-membrane-micro.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/b/b5/T--Pasteur_Paris--PEDOT-PSS-membrane-micro.jpg">
                <div class="legend"><b>Figure 7: </b>PEDOT:PSS-coated membrane (electron microscope)</div>
+
                    <div class="legend"><b>Figure 7: </b>PEDOT:PSS-coated membrane (electron microscope)</div>
            </div>
+
                </div>
            <div class="block full">
+
                <div class="block full">
                <p>Vapor-phase polymerization of PEDOT:Cl and PEDOT:Ts ([2]) also induced a change in the surface of the membranes (its exact nature also has not been verified). </p>
+
                    <p>Vapor-phase polymerization of PEDOT:Cl and PEDOT:Ts ([2]) also induced a change in the surface of the membranes (its exact nature also has not been verified). </p>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/5/5c/T--Pasteur_Paris--PEDOT-membrane.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/5/5c/T--Pasteur_Paris--PEDOT-membrane.jpg">
                <div class="legend"><b>Figure 8: </b>PEDOT:T<sub>S</sub> (left) / PEDOT:C<sub>L</sub> (right) - coated membranes</div>
+
                    <div class="legend"><b>Figure 8: </b>PEDOT:T<sub>S</sub> (left) / PEDOT:C<sub>L</sub> (right) - coated membranes</div>
            </div>
+
                </div>
            <div class="block half">
+
                <div class="block half">
                <img src="https://static.igem.org/mediawiki/2018/0/05/T--Pasteur_Paris--PEDOT-membrane-micro.jpg">
+
                    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Pasteur_Paris--PEDOT-membrane-micro.jpg">
                <div class="legend"><b>Figure 9: </b>PEDOT:C<sub>L</sub> - coated membrane (electron microscope)</div>
+
                    <div class="legend"><b>Figure 9: </b>PEDOT:C<sub>L</sub> - coated membrane (electron microscope)</div>
            </div>
+
                </div>
  
  
            <div class="block title"><h3 style="text-align: left;" id="Biocompatibility">Biocompatibility</h3></div>
+
                <div class="block title"><h3 style="text-align: left;" id="Biocompatibility">Biocompatibility</h3></div>
            <div class="block full">
+
                <div class="block full">
                <p>The first issue to tackle for such an interface is its biocompatibility, so its ability to coexist with a living organism. Experiments in self-made PDMS culture wells with <i> E. coli </i> showed a low biocompatibility for the gold coated membrane, but an enhanced biocompatibility for the polymer-coated membranes. </p>
+
                    <p>The first issue to tackle for such an interface is its biocompatibility, so its ability to coexist with a living organism. Experiments in self-made PDMS culture wells with <i> E. coli </i> showed a low biocompatibility for the gold coated membrane, but an enhanced biocompatibility for the polymer-coated membranes. </p>
            </div>
+
                </div>
  
            <div class="block title"><h3 style="text-align: left;" id="Conductivity">Conductivity</h3></div>
+
                <div class="block title"><h3 style="text-align: left;" id="Conductivity">Conductivity</h3></div>
            <div class="block full">
+
                <div class="block full">
                <p>The second criterion for a fully functional interface is its ability to conduct a neuron’s influx. Thus, conductivity measurements were made for signals of different frequencies on the membranes. Results showed excellent conductive properties for the gold-coated membranes and very good conductive properties for the polymer-coated membranes.</p>
+
                    <p>The second criterion for a fully functional interface is its ability to conduct a neuron’s influx. Thus, conductivity measurements were made for signals of different frequencies on the membranes. Results showed excellent conductive properties for the gold-coated membranes and very good conductive properties for the polymer-coated membranes.</p>
            </div>
+
                </div>
            <div class="block separator-mark"></div>
+
                <div class="block separator-mark"></div>
  
            <div class="block title"><h1>CONCLUSION</h1></div>
+
                <div class="block title"><h1>CONCLUSION</h1></div>
            <div class="block full">
+
                <div class="block full">
                <p>Biocompatible polymers like PEDOT:PSS represent ideal materials for engineering biocompatible and conductive interfaces, that are also relatively easy to produce, thus making them our preferred choice in our project. However, it is worth mentioning that we are totally aware of the fact that we can’t just expect neuron axons to bind to our interface and produce an electric signal. The electric signal transmitted by a nerve is heavily limited to the interior of the nerve by myelin covering the axon, and the signal transmitted by the axon is purely chemical. So it requires special electrodes, like Fine or Cuff electrodes, to detect an electric signal. We might explore these solutions in the continuation of our project to enhance our interface’s ability to transmit neuron signals.</p>
+
                    <p>Biocompatible polymers like PEDOT:PSS represent ideal materials for engineering biocompatible and conductive interfaces, that are also relatively easy to produce, thus making them our preferred choice in our project. However, it is worth mentioning that we are totally aware of the fact that we can’t just expect neuron axons to bind to our interface and produce an electric signal. The electric signal transmitted by a nerve is heavily limited to the interior of the nerve by myelin covering the axon, and the signal transmitted by the axon is purely chemical. So it requires special electrodes, like Fine or Cuff electrodes, to detect an electric signal. We might explore these solutions in the continuation of our project to enhance our interface’s ability to transmit neuron signals.</p>
            </div>
+
                </div>
  
 
         <div class="block separator-mark"></div>
 
         <div class="block separator-mark"></div>
  
            <div class="block title"><h1>REFERENCES</h1></div>
+
                <div class="block title"><h1>REFERENCES</h1></div>
            <div class="block full">
+
                <div class="block full">
 
                             <ul style="text-align: left;">
 
                             <ul style="text-align: left;">
<li style="list-style-type: decimal;">Jikui Wang, Guofeng Cai, Xudong Zhu, Xiaping Zhou, Oxidative Chemical Polymerization of 3,4-Ethylenedioxythiophene and its Applications in Antistatic coatings, Journal of Applied Polymer Science, 2012, Vol. 124, 109-115 .<br><br></li>
+
          <li style="list-style-type: decimal;">Jikui Wang, Guofeng Cai, Xudong Zhu, Xiaping Zhou, Oxidative Chemical Polymerization of 3,4-Ethylenedioxythiophene and its Applications in Antistatic coatings, Journal of Applied Polymer Science, 2012, Vol. 124, 109-115 .<br><br></li>
<li style="list-style-type: decimal;">Alexis E. Abelow, Kristin M. Persson, Edwin W.H. Jager, Magnus Berggren, Ilya Zharov, Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4ethylenedioxythiophene) and Polypyrrole. 2014, 299, 190-197.<br><br></li>
+
          <li style="list-style-type: decimal;">Alexis E. Abelow, Kristin M. Persson, Edwin W.H. Jager, Magnus Berggren, Ilya Zharov, Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4ethylenedioxythiophene) and Polypyrrole. 2014, 299, 190-197.<br><br></li>
 
             </div>  
 
             </div>  
 
             </div>  
 
             </div>  
            </div>
+
                </div>
 +
                <div class="block separator-mark"></div>
  
 
             <div class="block full bothContent">
 
             <div class="block full bothContent">
            <div class="block dropDown" id="Electrodes">
+
              <div class="block dropDown" id="Electrodes">
 
                     <h4>Electrodes</h4>
 
                     <h4>Electrodes</h4>
 
                 </div>
 
                 </div>
 
                 <div class="block hiddenContent">
 
                 <div class="block hiddenContent">
 
                     <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                     <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
            <div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div>
+
                <div class="block title" style="margin-top: 35px;"><h3 style="text-align: left;" id="Gold">Gold-coated membranes</h3></div>
        </div>
+
            </div>
    </div>
+
        </div>
  
 
         </div>
 
         </div>
 
     </div>
 
     </div>
 
</html>
 
</html>

Revision as of 11:42, 15 October 2018

""

MEMBRANE

When manipulating genetically engineered organisms, it is crucial to guarantee the confinement of these organisms. In our case, we want the genetically modified bacteria to stay at the interface between the prosthesis and the external organic medium. At the same time, one of the main issues our project wants to tackle is the conduction of the neuron influx to the prosthesis. The answer to these questions came as a double solution: confinement of the bacteria by conductive nanoporous membranes. The membrane’s nanoporosity allows substances produced by our modified biofilm to pass through the membrane, but the bacteria remain confined. We tested the conductivity and biocompatibility of two types of membranes.

Figure 1: Bacteria + Conductive Nanoporous Membrane = Confined Bacteria

Gold-coated membranes

Sterlitech Polycarbonate Gold-Coated Membrane Filters were the first membranes we tested. The pores have a diameter of 0.4 micrometer, which is small enough to confine Escherichia coli bacteria, which diameter and size are respectively about 1 micrometer and 2 micrometers. These membranes were relatively easy to manipulate with a forceps because of their high flexibility.

Figure 2: Gold-Coated Membrane
Figure 3: Gold-Coated Membrane (Electron Microscope)

Polymer-coated membranes

The other membranes were Sterlitech Alumina Oxide Membrane Filters with 0.2 micrometer pores. Their higher rigidity compared to the gold-coated membranes led to several membranes being broken while manipulating them with a forceps. We used these membranes as a support for different conductive and biocompatible polymers: PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), PEDOT:Cl and PEDOT:Ts.

Figure 4: Alumnia Oxyde Membrane in grey
Figure 5: Alumnia Oxyde Membrane in grey (electron microscope)

For PEDOT:PSS, an aqueous solution of PEDOT:PSS was prepared ([1]) and alumina oxide membranes were dipped for 24 hours in this solution. Electron microscopy of the membranes before and after the experiment showed the deposit of a substance on their surface; however its nature has not been tested.

Figure 6: PEDOT:PSS-coated membrane
Figure 7: PEDOT:PSS-coated membrane (electron microscope)

Vapor-phase polymerization of PEDOT:Cl and PEDOT:Ts ([2]) also induced a change in the surface of the membranes (its exact nature also has not been verified).

Figure 8: PEDOT:TS (left) / PEDOT:CL (right) - coated membranes
Figure 9: PEDOT:CL - coated membrane (electron microscope)

Biocompatibility

The first issue to tackle for such an interface is its biocompatibility, so its ability to coexist with a living organism. Experiments in self-made PDMS culture wells with E. coli showed a low biocompatibility for the gold coated membrane, but an enhanced biocompatibility for the polymer-coated membranes.

Conductivity

The second criterion for a fully functional interface is its ability to conduct a neuron’s influx. Thus, conductivity measurements were made for signals of different frequencies on the membranes. Results showed excellent conductive properties for the gold-coated membranes and very good conductive properties for the polymer-coated membranes.

CONCLUSION

Biocompatible polymers like PEDOT:PSS represent ideal materials for engineering biocompatible and conductive interfaces, that are also relatively easy to produce, thus making them our preferred choice in our project. However, it is worth mentioning that we are totally aware of the fact that we can’t just expect neuron axons to bind to our interface and produce an electric signal. The electric signal transmitted by a nerve is heavily limited to the interior of the nerve by myelin covering the axon, and the signal transmitted by the axon is purely chemical. So it requires special electrodes, like Fine or Cuff electrodes, to detect an electric signal. We might explore these solutions in the continuation of our project to enhance our interface’s ability to transmit neuron signals.

REFERENCES

  • Jikui Wang, Guofeng Cai, Xudong Zhu, Xiaping Zhou, Oxidative Chemical Polymerization of 3,4-Ethylenedioxythiophene and its Applications in Antistatic coatings, Journal of Applied Polymer Science, 2012, Vol. 124, 109-115 .

  • Alexis E. Abelow, Kristin M. Persson, Edwin W.H. Jager, Magnus Berggren, Ilya Zharov, Electroresponsive Nanoporous Membranes by Coating Anodized Alumina with Poly(3,4ethylenedioxythiophene) and Polypyrrole. 2014, 299, 190-197.

Gold-coated membranes