Line 523: | Line 523: | ||
<p>The <b> membrane filter </b> is a key element of our prosthesis system, allowing the <b> confinement </b> of the genetically modified bacteria and the <b> conduction of neuron impulses </b>. We tested two types of membranes: Sterlitech Polycarbonate <b> Gold-Coated </b> Membrane Filters (pores diameter of 0.4 micrometers) and Sterlitech <b> Alumina Oxide </b> Membrane Filters (pores diameter of 0.2 micrometers).<br> | <p>The <b> membrane filter </b> is a key element of our prosthesis system, allowing the <b> confinement </b> of the genetically modified bacteria and the <b> conduction of neuron impulses </b>. We tested two types of membranes: Sterlitech Polycarbonate <b> Gold-Coated </b> Membrane Filters (pores diameter of 0.4 micrometers) and Sterlitech <b> Alumina Oxide </b> Membrane Filters (pores diameter of 0.2 micrometers).<br> | ||
Sterlitech Alumina Oxide Membrane Filters were <b> coated </b> with different types of <b> biocompatible conductive polymers: PEDOT:PSS </b> (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), <b> PEDOT:Cl </b> and <b> PEDOT:Ts </b> .<br> | Sterlitech Alumina Oxide Membrane Filters were <b> coated </b> with different types of <b> biocompatible conductive polymers: PEDOT:PSS </b> (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), <b> PEDOT:Cl </b> and <b> PEDOT:Ts </b> .<br> | ||
− | To characterize the potential of the different types of membranes to be integrated into our prosthesis system, <b> we designed a PDMS well chip for that exact purpose </b>, a modified <b>culture well </b>. The bottom of the well is a membrane, and a platinum wire touching the membrane electrically connects the inside of the well with the exterior.<br></p> | + | To characterize the potential of the different types of membranes to be integrated into our prosthesis system, <b> we designed a PDMS (polydimethylsiloxane) well chip for that exact purpose </b>, a modified <b>culture well </b>. The bottom of the well is a membrane, and a platinum wire touching the membrane electrically connects the inside of the well with the exterior.<br></p> |
</div> | </div> | ||
Line 537: | Line 537: | ||
<div class="block full"> | <div class="block full"> | ||
<h2 style="text-align: left;">Confinement</h2> | <h2 style="text-align: left;">Confinement</h2> | ||
− | <p> The first requirement for the membrane is that it needs to meet is the ability to retain bacteria of the size of <i>E. coli</i> (1-2 micrometers). Theoretically, confinement should be garanteed because the membrane's pore size is smaller than <i>E. coli</i>. Three experiments were conducted on membrane microchannel chips to prove that the gold-coated membranes can retain bacteria. </p> | + | <p> The first requirement for the membrane is that it needs to meet is the ability to <b> retain bacteria </b> of the size of <i>E. coli</i> (1-2 micrometers). Theoretically, confinement should be garanteed because the membrane's pore size is smaller than <i>E. coli</i>. Three experiments were conducted on membrane microchannel chips to <b> prove that the gold-coated membranes can retain bacteria </b>. </p> |
<h3> First experiment </h3> | <h3> First experiment </h3> | ||
<p> The optical density of an <i>E. coli</i> liquid culture was measured. Liquid culture was poured in a microchannel chip on one side, and optical density of the liquid that flowed to the other side of the microchannnels was measured. </p> | <p> The optical density of an <i>E. coli</i> liquid culture was measured. Liquid culture was poured in a microchannel chip on one side, and optical density of the liquid that flowed to the other side of the microchannnels was measured. </p> | ||
Line 563: | Line 563: | ||
<p> A few drops of E. coli liquid culture were poured in a membrane microchannel chip. The chip was then observed under a microscope. </p> | <p> A few drops of E. coli liquid culture were poured in a membrane microchannel chip. The chip was then observed under a microscope. </p> | ||
<h4 style="text-align: left;"> Interpretation </h4> | <h4 style="text-align: left;"> Interpretation </h4> | ||
− | <p> The membrane is located on the left side, and liquid culture was poured on that side, before the membrane. Bacteria this time wasn't able to flow to the right side, the membrane stopped their progression. It is clear on figure 24, that the left side is crowded with bacteria, and the right side is empty (apart from a few PDMS impurities). Final conclusion on the membrane microchannel chips is, that although the integration method of the membrane filter in the chip is complicated and a bit improvised, some chips apparently do fulfill their purpose, demonstrating this way the confinement of the bacteria with a membrane. Leaks observed in previous experiments were also probably caused by membrane filters that were not correctly stretching across the whole chip.</p> | + | <p> The membrane is located on the left side, and liquid culture was poured on that side, before the membrane. Bacteria this time wasn't able to flow to the right side, <b> the membrane stopped their progression </b>. It is clear on figure 24, that the left side is crowded with bacteria, and the right side is empty (apart from a few PDMS impurities). Final conclusion on the membrane microchannel chips is, that although the integration method of the membrane filter in the chip is complicated and a bit improvised, <b> some chips apparently do fulfill their purpose </b>, demonstrating this way the confinement of the bacteria with a membrane. Leaks observed in previous experiments were also probably caused by membrane filters that were not correctly stretching across the whole chip.</p> |
</div> | </div> | ||
Line 595: | Line 595: | ||
<div class="block full"> | <div class="block full"> | ||
<h3> PEDOT:PSS coating</h3> | <h3> PEDOT:PSS coating</h3> | ||
− | <p> The color of the alumina oxide membranes changed radically from light grey to black, suggesting the deposit of PEDOT:PSS on the membrane, as expected. Scanning electron microscopy (courtesy of Bruno Bresson, Sciences et Ingénierie de la Matière Molle Physico-chimie des Polymères et Milieux Dispersés) of a PEDOT:PSS-coated membrane revealed cluster-like formation of PEDOT:PSS deposits. It is thought that the lack of uniformity of the coating won't give the expected results in matters of biocompatibility and conductivity. </p> | + | <p> The color of the alumina oxide membranes changed radically from <b> light grey to black </b>, suggesting the deposit of PEDOT:PSS on the membrane, as expected. Scanning electron microscopy (courtesy of Bruno Bresson, Sciences et Ingénierie de la Matière Molle Physico-chimie des Polymères et Milieux Dispersés) of a PEDOT:PSS-coated membrane revealed <b> cluster-like formation of PEDOT:PSS deposits </b>. It is thought that the lack of uniformity of the coating won't give the expected results in matters of biocompatibility and conductivity. </p> |
</div> | </div> | ||
Line 610: | Line 610: | ||
<div class="block full"> | <div class="block full"> | ||
<h3> PEDOT:Cl and PEDOT:Ts coating</h3> | <h3> PEDOT:Cl and PEDOT:Ts coating</h3> | ||
− | <p> The color of the alumina oxide membranes changed radically from light grey to black with green shades for PEDOT:Cl and blue shades for PEDOT:Ts, suggesting the deposit of the polymers on the membranes, as expected. Scanning electron microscopy reveals a uniform thickening of the membrane's surface, suggesting a uniform PEDOT:Cl coating of the membrane. We expect better results from the PEDOT:Cl-coated and PEDOT:Ts-coated membranes than PEDOT:PSS-coated ones. </p> | + | <p> The color of the alumina oxide membranes changed radically from <b> light grey to black with green shades for PEDOT:Cl and blue shades for PEDOT:Ts </b>, suggesting the deposit of the polymers on the membranes, as expected. Scanning electron microscopy reveals a uniform thickening of the membrane's surface, suggesting a <b> uniform </b> PEDOT:Cl coating of the membrane. We expect better results from the PEDOT:Cl-coated and PEDOT:Ts-coated membranes than PEDOT:PSS-coated ones. </p> |
</div> | </div> | ||
Line 638: | Line 638: | ||
<div class="block full"> | <div class="block full"> | ||
<h2 style="text-align: left;">Conductivity</h2> | <h2 style="text-align: left;">Conductivity</h2> | ||
− | <p> The membranes used in our system should possess good electric conductive capabilities for nerve influx conduction. The goal here is to evaluate the conductivity of the membranes.</p> | + | <p> The membranes used in our system should possess good electric conductive capabilities for nerve influx conduction. The goal here is to <b> evaluate the conductivity of the membranes </b>.</p> |
</div> | </div> | ||
Line 646: | Line 646: | ||
</div> | </div> | ||
− | <div class="block two-third"> | + | <div class="block two-third"> |
− | <p>The conductivity of the membranes was measured on a self-made device. It consists of a culture well made of PDMS (polydimethylsiloxane), with a membrane filter at its bottom and a platinum wire linking the conductive membrane filter with the exterior.</p> | + | <p>The conductivity of the membranes was measured on a <b> self-made device </b>. It consists of a culture well made of PDMS (polydimethylsiloxane), with a <b> membrane filter </b> at its bottom and a <b> platinum wire </b> linking the conductive membrane filter with the exterior.</p> |
</div> | </div> | ||
<div class ="block full"> | <div class ="block full"> | ||
<h3>Platinum wire</h3> | <h3>Platinum wire</h3> | ||
− | <p>As in the end we were going to measure the conductivity of the system biofilm+membrane+platinum wire, we wanted to simplify the measurements and neglect the impact of the platinum wire. Function generator was set on sine. The physical quantities measured here are Eg, the generator's tension amplitude and Ep, the voltage difference between the two extremities of a platinum wire. the quantity calculated here is 20*log(Ep/Eg) for different frequencies. </p> | + | <p>As in the end we were going to measure the conductivity of the system biofilm+membrane+platinum wire, we wanted to simplify the measurements and <b> neglect the impact of the platinum wire </b>. Function generator was set on sine. The physical quantities measured here are Eg, the generator's tension amplitude and Ep, the voltage difference between the two extremities of a platinum wire. the quantity calculated here is 20*log(Ep/Eg) for different frequencies. </p> |
<h4 style="text-align: left;"> Results </h4> | <h4 style="text-align: left;"> Results </h4> | ||
<img src="https://static.igem.org/mediawiki/2018/c/c4/T--Pasteur_Paris--Conductivity-platinum-wire.jpg" style="width:500px"> | <img src="https://static.igem.org/mediawiki/2018/c/c4/T--Pasteur_Paris--Conductivity-platinum-wire.jpg" style="width:500px"> | ||
<div class="legend"><b>Figure 33: </b> Conductivity of a platinum wire for different frequencies </div> | <div class="legend"><b>Figure 33: </b> Conductivity of a platinum wire for different frequencies </div> | ||
<h4 style="text-align: left;"> Interpretation </h4> | <h4 style="text-align: left;"> Interpretation </h4> | ||
− | <p> Voltage difference calculated is extremely low, indicating a very good conductivity for the platinum wires, so its resistance (in low frequencies) could be neglected at first glance when it would be used in PDMS well chips. Resistance increases in higher frequencies, because of the skin-effect in metals: the strip transforms into an antenna. But as we were going to use only low frequencies, this didn't affect us. </p> | + | <p> Voltage difference calculated is extremely low, indicating a very good conductivity for the platinum wires, so its resistance (in low frequencies) <b> could be neglected </b> at first glance when it would be used in PDMS well chips. Resistance increases in higher frequencies, because of the skin-effect in metals: the strip transforms into an antenna. But as we were going to use only low frequencies, this didn't affect us. </p> |
</div> | </div> | ||
Line 669: | Line 669: | ||
<div class="legend"><b>Figure 34: </b> Conductivity of a platinum wire for different frequencies </div> | <div class="legend"><b>Figure 34: </b> Conductivity of a platinum wire for different frequencies </div> | ||
<h4 style="text-align: left;"> Interpretation </h4> | <h4 style="text-align: left;"> Interpretation </h4> | ||
− | <p> Voltage difference calculated is very low, indicating a very good conductivity for the gold-coated membrane. Technically, we measured the conductivity of the system membrane+platinum wire, but we showed that the wire's conductivity could be neglected. Resistance increases in higher frequencies, again because of the skin-effect in metals. But as we were going to use only low frequencies, this doesn't affect us, and moreover, the frequency response is flat for wide range of low frequencies. </p> | + | <p> Voltage difference calculated is very low, indicating a very good conductivity for the gold-coated membrane. Technically, we measured the conductivity of the system membrane+platinum wire, but we showed that the wire's conductivity could be neglected. Resistance increases in higher frequencies, again because of the skin-effect in metals. But as we were going to use only low frequencies, this doesn't affect us, and moreover,<b> the frequency response is flat for wide range of low frequencies </b>. </p> |
</div> | </div> | ||
Line 677: | Line 677: | ||
<div class ="block full"> | <div class ="block full"> | ||
<h3>Membrane conductivity</h3> | <h3>Membrane conductivity</h3> | ||
− | <p> We measured the conductivity of 6 membranes on PDMS well chips (2 gold-coated, 1 bare alumina oxide, 1 PEDOT:PSS-coated, 1 PEDOT:Cl-coated, 1 PEDOT:Ts-coated). Here we show the electric circuit that we used for the following experiments. </p> | + | <p> We measured the <b> conductivity of 6 membranes on PDMS well chips </b> (2 gold-coated, 1 bare alumina oxide, 1 PEDOT:PSS-coated, 1 PEDOT:Cl-coated, 1 PEDOT:Ts-coated). Here we show the electric circuit that we used for the following experiments. </p> |
<img src="https://static.igem.org/mediawiki/2018/b/bb/T--Pasteur_Paris--Electrical_circuit_1.pdf" style="width:500px"> | <img src="https://static.igem.org/mediawiki/2018/b/bb/T--Pasteur_Paris--Electrical_circuit_1.pdf" style="width:500px"> | ||
<div class="legend"><b>Figure 35: </b> Electric circuit used for the different conductivity measurements </div> | <div class="legend"><b>Figure 35: </b> Electric circuit used for the different conductivity measurements </div> | ||
Line 685: | Line 685: | ||
<div class="legend"><b>Figure 36: </b> Conductivity of a platinum wire for different frequencies (mean value and standard deviation for each membrane) </div> | <div class="legend"><b>Figure 36: </b> Conductivity of a platinum wire for different frequencies (mean value and standard deviation for each membrane) </div> | ||
<h4 style="text-align: left;"> Interpretation </h4> | <h4 style="text-align: left;"> Interpretation </h4> | ||
− | <p> Bare alumina oxide and PEDOT:PSS-coated membranes show similar conductivies, indicating the incomplete coating of PEDOT:PSS on alumina oxide membranes. On the opposite, PEDOT:Cl and PEDOT:Ts exhibit on average better conductivities, but in the same time, the coating of these membranes revealed by electron microscopy seemed to have covered the alumina oxide membranes in a more uniform way, ensuring enhanced conductive capabilities. These results can be criticized because of the high deviation and because the membranes conductivity was measured after several biofilms were grown on them, which may have affected the measurements. </p> | + | <p> Bare alumina oxide and PEDOT:PSS-coated membranes show similar conductivies, indicating the <b> incomplete coating of PEDOT:PSS </b> on alumina oxide membranes. On the opposite, PEDOT:Cl and PEDOT:Ts exhibit on average better conductivities, but in the same time, the coating of these membranes revealed by electron microscopy seemed to have covered the alumina oxide membranes in a more uniform way, <b> ensuring enhanced conductive capabilities </b>. These results can be criticized because of the high deviation and because the membranes conductivity was measured after several biofilms were grown on them, which may have affected the measurements. </p> |
</div> | </div> | ||
Line 694: | Line 694: | ||
<div class="block full"> | <div class="block full"> | ||
<h2 style="text-align: left;">Biocompatibility and biofilm conductivity</h2> | <h2 style="text-align: left;">Biocompatibility and biofilm conductivity</h2> | ||
− | <p> One last important property of the membranes to measure was the capability of bacteria to form a biofilm on them, as in our prosthesis system, the membrane is going to be directly in contact with the genetically modified biofilm, as well as the human body. </p> | + | <p> One last important property of the membranes to measure was the <b> capability of bacteria to form a biofilm </b> on them, as in our prosthesis system, the membrane is going to be directly in contact with the genetically modified biofilm, as well as the human body. </p> |
<p> We used the last section of the following <a href="https://static.igem.org/mediawiki/2018/b/b5/T--Pasteur_Paris--PDMS-well-chip.pdf">protocol</a> to form biofilms in our PDMS well chips and to measure the biofilm growth.</p> | <p> We used the last section of the following <a href="https://static.igem.org/mediawiki/2018/b/b5/T--Pasteur_Paris--PDMS-well-chip.pdf">protocol</a> to form biofilms in our PDMS well chips and to measure the biofilm growth.</p> | ||
<h4 style="text-align: left;"> Results: biofilm growth </h4> | <h4 style="text-align: left;"> Results: biofilm growth </h4> | ||
Line 708: | Line 708: | ||
<div class="legend"><b>Figure 39: </b>Estimated biofilm conductivity </div> | <div class="legend"><b>Figure 39: </b>Estimated biofilm conductivity </div> | ||
<h4 style="text-align: left;"> Interpretation </h4> | <h4 style="text-align: left;"> Interpretation </h4> | ||
− | <p> As told by the membrane manufacturer, biofilm formation on gold membranes seems indeed to be more difficult than on other membranes. However we expected PEDOT:PSS-coated membranes to stimulate more the growth of biofilm, but perhaps this may be just another indicator of the incomplete coating. Surprisingly, PEDOT:Cl tends to allow better formation of biofilms. We realized only after the experiments the need for a control biofilm culture without membrane. </p> | + | <p> As told by the membrane manufacturer, biofilm formation on gold membranes seems indeed to be more difficult than on other membranes. However we expected PEDOT:PSS-coated membranes to stimulate more the growth of biofilm, but perhaps this may be just another indicator of the incomplete coating. Surprisingly, <b> PEDOT:Cl tends to allow better formation of biofilms</b>. We realized only after the experiments the need for a control biofilm culture without membrane. </p> |
<p> Conductivity with a biofilm is better with gold membranes, although the conductivity of gold membranes themselves isn't the best. This may be explained by the fact, that because of the thinner biofilm formation on gold membranes, the electrical wires touched not only the biofilm, but also the membrane, bypassing the biofilm and leading to imprecise measurements. </p> | <p> Conductivity with a biofilm is better with gold membranes, although the conductivity of gold membranes themselves isn't the best. This may be explained by the fact, that because of the thinner biofilm formation on gold membranes, the electrical wires touched not only the biofilm, but also the membrane, bypassing the biofilm and leading to imprecise measurements. </p> | ||
− | <p> Approximate biofilm conductivity is therefore probably wrong for the gold membrane. However, it is interesting to notice that the biofilm conductivity measured for the bare alumina oxyde, PEDOT:Ts-coated one and PEDOT:PSS-coated give more or less the same value, suggesting that with more measurements, adapted equipement and better methods it would be indeed possible to measure the biofilm's conductivity with our PDMS well chips. </p> | + | <p> Approximate biofilm conductivity is therefore probably wrong for the gold membrane. However, it is interesting to notice that the biofilm conductivity measured for the bare alumina oxyde, PEDOT:Ts-coated one and PEDOT:PSS-coated give more or less the same value, suggesting that with <b> more measurements, adapted equipement and better methods it would be indeed possible to measure the biofilm's conductivity with our PDMS well chips </b>. </p> |
</div> | </div> |
Revision as of 01:02, 18 October 2018
RECONNECT NERVES
Click to see more
Summary
Achievements:
- Successfully cloned a biobrick coding for secretion of NGF in pET43.1a and iGEM plasmid backbone pSB1C3, creating a new part BBa_K2616000.
- Successfully sequenced BBa_K2616000 in pSB1C3 and sent to iGEM registry.
- Successfully co-transformed E. coli with plasmid secreting proNGF and plasmid expressing the secretion system, creating bacteria capable of secreting NGF in the medium.
- Successfully characterized production of proNGF thanks to mass spectrometry and western blot.
- Successfully observed axon growth in microfluidic chip in presence of commercial NGF.
- Successfully observed activity of our proNGF in invitro cellular culture compared to commercial NGF with a concentration between 500 ng/mL and 900 ng/mL.
Next steps:
- Purify secreted proNGF, and characterize its effects on neuron growth thanks to our microfluidic device.
- Global proof of concept in a microfluidic device containing neurons in one of the chamber, and our engineered bacteria in the other.
CELL CULTURE
Click to see more
FIGHT INFECTIONS
Click to see more
Summary
Achievements:
- Successfully cloned a biobrick coding for RIP secretion in pBR322 and in pSB1C3, creating a new part Bba_K2616001 .
- Successfully sequenced Bba_K2616001 in pSB1C3 and sent to iGEM registry.
- Successfully cultivated S. aureus biofilms in 96-well plates with different supernatants. Although there was a high variability in our results, and we used several protocols to overcome it, in one case, we were able to observe a reduction in biofilm formation in the presence of our RIP.
Next steps:
- Clone the sensor device with inducible RIP production upon S. aureus detection.
- Improve the characterization of RIP effect on biofilm formation with a more standardized assay.
KILL SWITCH
Click to see more
Summary
Achievements:
- Successfully cloned the biobrick Bba_K2616002 coding for toxin/antitoxin (CcdB/CcdA) system in pSB1C3, creating a new part.
- Successfully sequenced BBa_K2616002 in pSB1C3 and sent it to iGEM registry.
- Successfully observed normal growth of our engineered bacteria at 25°C and 37°C and absence of growth at 18°C and 20°C, showing the efficiency of the kill switch.
Next steps:
- Find a system that kills bacteria when released in the environment rather than just stopping their growth.