CharlotteR (Talk | contribs) |
CharlotteR (Talk | contribs) |
||
Line 478: | Line 478: | ||
<div class="block title"> | <div class="block title"> | ||
<h4 style="text-align: left;">Influence of number of transporters</h4> | <h4 style="text-align: left;">Influence of number of transporters</h4> | ||
+ | </div> | ||
+ | <div class="block full"> | ||
+ | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of NGF concentration we can expect.</p> | ||
+ | <p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | ||
</div> | </div> | ||
<div class="block two-third center"> | <div class="block two-third center"> | ||
<img src="https://static.igem.org/mediawiki/2018/d/d8/T--Pasteur_Paris--model2.png"> | <img src="https://static.igem.org/mediawiki/2018/d/d8/T--Pasteur_Paris--model2.png"> | ||
+ | </div> | ||
+ | <div class="block full"> | ||
+ | <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of NGF concentration we can expect.</p> | ||
+ | <p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p> | ||
</div> | </div> | ||
<div class="block title"> | <div class="block title"> | ||
Line 491: | Line 499: | ||
</div> | </div> | ||
<div class="block two-third"> | <div class="block two-third"> | ||
− | <p> | + | <p>As expected, the more transporters the cell has, the more recombinant NGF is secreted, but the amount of functional secreted NGF (in blue) remains limited due to TEV protease cleaving efficiency. </p> |
− | <p> | + | <p>Taking in account the number of E. coli cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional NGF of 1 nM, which correspond to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth. |
+ | Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem, since we could expect 5 nM functional NGF if the totality of the secreted NGF was cleaved. | ||
+ | </p> | ||
</div> | </div> | ||
<div class="block title"> | <div class="block title"> |
Revision as of 10:03, 11 October 2018
General introduction
The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of Nerve Growth Factor (NGF). Nerve growth factor is one of a group of small proteins called neurotrophins that are responsible for the development of new neurons, and for the health and maintenance of mature ones. We created a deterministic model to help the wetlab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dosedependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip we used MATLAB, App Designer, Python, Gmsh, Spaceclaim and FreeFem. This is an important part of our project since it creates the link between the wetlab and drylab.
We divided our model in three parts:
- Production of NGF by the E. coli genetically modified
- Simulation of the diffusion of NGF in a given environment
- Neurons growth in the presence of NGF
Context of our model
Our project aims at creating a biofilm composed of genetically modified E. coli able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the prothesis; hence aiming at connecting the prothesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires. It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced reeducation time.
The aim of the wetllab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: the genetically modifed E. coli that produces NGF and the other one of neurons. Micro channels link the two compartments in the middle of the chip, allowing the diffusion of NGF and the growth of the neurites. Our model will hence be established on a micro-fluidic chip shape in order to share our results with the wetlab and indicate them the optimal concentration of NGF needed according our their model.
We introduce different parameters in order to create our model :
g | Length of the neurite outgrowth |
dg/dt
|
Neurite outgrowth rate |
u(x,t) | Concentration of NGF at the position x and time t |
du/dt
|
NGF concentration gradient at the position x and time t |
Cdiff | Diffusion coefficient of NGF |
K | Gradient factor (growth rate of the neurite under the stimulation of the NGF concentration gradient) |
Gθ | Baseline growth rate (neurite growth rate in absence of NGF concentration gradient) |
L | Length of the conduit |
NGF Production by genetically modified E. coli
NGF diffusion simultation in a given environment
Neurons growth in the presence of NGF
References
- Defining the concentration gradient of nerve growth factor for guided neurite outgrowth, XCao M.SShoichet, March 2001
- Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaffolds, Moore K, MacSween M, Shoichet M, feb 2006
- Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (NGF), Tse TH, Chan BP, Chan CM, Lam J, sep 2007
- Mathematical modelling of multispecies biofilms for wastewater treatment, Maria Rosaria Mattei, november 2005