CharlotteR (Talk | contribs) |
|||
Line 78: | Line 78: | ||
</div> | </div> | ||
<div class="block two-third"> | <div class="block two-third"> | ||
− | <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of Nerve Growth Factor (NGF). Nerve growth factor is | + | <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of Nerve Growth Factor (NGF). Nerve growth factor is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dose-dependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip, we used MATLAB, App Designer, Python, Gmsh, SpaceClaim and FreeFem. This is an important part of our project since it creates the link between the wet lab and dry lab. </p> |
</div> | </div> | ||
<div class="block one-third"> | <div class="block one-third"> | ||
Line 97: | Line 97: | ||
</div> | </div> | ||
<div class="block half"> | <div class="block half"> | ||
− | <p>Our project aims at creating a biofilm composed of genetically modified <i>E. coli</i> able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the | + | <p>Our project aims at creating a biofilm composed of genetically modified <i>E. coli</i> able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the prosthesis; hence aiming at connecting the prosthesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires. It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced re-education time.</p> |
</div> | </div> | ||
<div class="block half"> | <div class="block half"> | ||
Line 106: | Line 106: | ||
</div> | </div> | ||
<div class="block two-third"> | <div class="block two-third"> | ||
− | <p>The aim of the | + | <p>The aim of the wet lab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: one contains the genetically modified E. coli that produce NGF and the other one contains neurons. Microchannels link the two compartments in the middle of the chip, allowing the diffusion of NGF and the growth of the neurites. Our model will hence be established on a microfluidic chip shape in order to share our results with the wet lab and indicate them the optimal concentration of NGF needed according to our model.</p> |
</div> | </div> | ||
<div class="block two-third center"> | <div class="block two-third center"> |
Revision as of 11:25, 13 October 2018
General introduction
The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of Nerve Growth Factor (NGF). Nerve growth factor is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dose-dependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip, we used MATLAB, App Designer, Python, Gmsh, SpaceClaim and FreeFem. This is an important part of our project since it creates the link between the wet lab and dry lab.
We divided our model in three parts:
- Production of NGF by the E. coli genetically modified
- Simulation of the diffusion of NGF in a given environment
- Neurons growth in the presence of NGF
Context of our model
Our project aims at creating a biofilm composed of genetically modified E. coli able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the prosthesis; hence aiming at connecting the prosthesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires. It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced re-education time.
The aim of the wet lab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: one contains the genetically modified E. coli that produce NGF and the other one contains neurons. Microchannels link the two compartments in the middle of the chip, allowing the diffusion of NGF and the growth of the neurites. Our model will hence be established on a microfluidic chip shape in order to share our results with the wet lab and indicate them the optimal concentration of NGF needed according to our model.
We introduce different parameters in order to create our model :
g | Length of the neurite outgrowth |
dg/dt
|
Neurite outgrowth rate |
u(x,t) | Concentration of NGF at the position x and time t |
du/dt
|
NGF concentration gradient at the position x and time t |
Cdiff | Diffusion coefficient of NGF |
K | Gradient factor (growth rate of the neurite under the stimulation of the NGF concentration gradient) |
Gθ | Baseline growth rate (neurite growth rate in absence of NGF concentration gradient) |
L | Length of the conduit |
NGF Production by genetically modified E. coli
NGF diffusion simultation in a given environment
Neurons growth in the presence of NGF
References
- Defining the concentration gradient of nerve growth factor for guided neurite outgrowth, XCao M.SShoichet, March 2001
- Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaffolds, Moore K, MacSween M, Shoichet M, feb 2006
- Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (NGF), Tse TH, Chan BP, Chan CM, Lam J, sep 2007
- Mathematical modelling of multispecies biofilms for wastewater treatment, Maria Rosaria Mattei, november 2005