Difference between revisions of "Team:Pasteur Paris/Model"

(Undo revision 281399 by ThomasStarck (talk))
(Undo revision 281366 by ThomasStarck (talk))
Line 63: Line 63:
 
             <div id="indexContent">
 
             <div id="indexContent">
 
                 <p><a href="#Introduction" class="link">Introduction</a></p>
 
                 <p><a href="#Introduction" class="link">Introduction</a></p>
                 <p><a href="#Production" class="link">NGF Production</a></p>
+
                 <p><a href="#Production" class="link">proNGF Production</a></p>
                 <p><a href="#Diffusion" class="link">NGF Diffusion</a></p>
+
                 <p><a href="#Diffusion" class="link">proNGF Diffusion</a></p>
 
                 <p><a href="#Growth" class="link">Neurons Growth</a></p>
 
                 <p><a href="#Growth" class="link">Neurons Growth</a></p>
 
                 <p><a href="#References" class="link">References</a></p>
 
                 <p><a href="#References" class="link">References</a></p>
Line 78: Line 78:
 
                 </div>
 
                 </div>
 
                 <div class="block two-third">
 
                 <div class="block two-third">
                     <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of Nerve Growth Factor (NGF). Nerve growth factor is one of a group of small proteins called neurotrophins that are responsible for the development of new neurons, and for the health and maintenance of mature ones. We created a deterministic model to help the wetlab establish the optimal concentration gradients of NGF needed for the regrowth of the nerves. NGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be NGF dosedependent: if NGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip we used MATLAB, App Designer, Python, Gmsh, Spaceclaim and FreeFem. This is an important part of our project since it creates the link between the wetlab and drylab. </p>
+
                     <p>The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of pro Nerve Growth Factor (proNGF). proNGF is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of proNGF needed for the regrowth of the nerves. proNGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be proNGF dose-dependent: if proNGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip, we used MATLAB, App Designer, Python, Gmsh, SpaceClaim and FreeFem. This is an important part of our project since it creates the link between the wet lab and dry lab. </p>
 
                 </div>
 
                 </div>
 
                 <div class="block one-third">
 
                 <div class="block one-third">
                     <img src="https://static.igem.org/mediawiki/2018/2/23/T--Pasteur_Paris--neurone%2BNGF%2Bchip.png" style="max-width: 450px">
+
                     <img src="https://static.igem.org/mediawiki/2018/2/23/T--Pasteur_Paris--neurone%2BproNGF%2Bchip.png" style="max-width: 450px">
 
                 </div>
 
                 </div>
 
                 <div class="block full">
 
                 <div class="block full">
 
                     <p style="text-align: center;">We divided our model in three parts:
 
                     <p style="text-align: center;">We divided our model in three parts:
 
                     <ol style="text-align: left;">
 
                     <ol style="text-align: left;">
                         <li>Production of NGF by the <i>E. coli</i> genetically modified</li>
+
                         <li>Production of proNGF by the <i>E. coli</i> genetically modified</li>
                         <li>Simulation of the diffusion of NGF in a given environment</li>
+
                         <li>Simulation of the diffusion of proNGF in a given environment</li>
                         <li>Neurons growth in the presence of NGF</li>
+
                         <li>Neurons growth in the presence of proNGF</li>
 
                     </ol>
 
                     </ol>
 
                     </p>
 
                     </p>
Line 97: Line 97:
 
                 </div>
 
                 </div>
 
                 <div class="block half">
 
                 <div class="block half">
                     <p>Our project aims at creating a biofilm composed of genetically modified <i>E. coli</i> able to release a neurotrophic factor: NGF. It helps to accelerate the connection between the neurons and the implant of the prothesis; hence aiming at connecting the prothesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires.  It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced reeducation time.</p>
+
                     <p>Our project aims at creating a biofilm composed of genetically modified <i>E. coli</i> able to release a neurotrophic factor: proNGF. It helps to accelerate the connection between the neurons and the implant of the prosthesis; hence aiming at connecting the prosthesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires.  It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced re-education time.</p>
 
                 </div>
 
                 </div>
 
                 <div class="block half">
 
                 <div class="block half">
Line 106: Line 106:
 
                 </div>
 
                 </div>
 
                 <div class="block two-third">
 
                 <div class="block two-third">
                     <p>The aim of the wetllab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: the genetically modifed E. coli that produces NGF and the other one of neurons. Micro channels link the two compartments in the middle of the chip, allowing the diffusion of NGF and the growth of the neurites.  Our model will hence be established on a micro-fluidic chip shape in order to share our results with the wetlab and indicate them the optimal concentration of NGF needed according our their model.</p>
+
                     <p>The aim of the wet lab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: one contains the genetically modified E. coli that produce proNGF and the other one contains neurons. Microchannels link the two compartments in the middle of the chip, allowing the diffusion of proNGF and the growth of the neurites.  Our model will hence be established on a microfluidic chip shape in order to share our results with the wet lab and indicate them the optimal concentration of proNGF needed according to our model.</p>
 
                 </div>
 
                 </div>
 
                 <div class="block two-third center">
 
                 <div class="block two-third center">
Line 125: Line 125:
 
                         <tr>
 
                         <tr>
 
                             <td>u(x,t)</td>
 
                             <td>u(x,t)</td>
                             <td>Concentration of NGF at the position x and time t</td>
+
                             <td>Concentration of proNGF at the position x and time t</td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
Line 133: Line 133:
 
                                 </span>
 
                                 </span>
 
                             </td>
 
                             </td>
                             <td>NGF concentration gradient at the position x and time t</td>
+
                             <td>proNGF concentration gradient at the position x and time t</td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
 
                             <td>C<SUB>diff</SUB></td>
 
                             <td>C<SUB>diff</SUB></td>
                             <td>Diffusion coefficient of NGF</td>
+
                             <td>Diffusion coefficient of proNGF</td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
 
                             <td>K</td>
 
                             <td>K</td>
                             <td>Gradient factor (growth rate of the neurite under the stimulation of the NGF concentration gradient)</td>
+
                             <td>Gradient factor (growth rate of the neurite under the stimulation of the proNGF concentration gradient)</td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
 
                             <td>G<SUB><FONT face="Raleway">&theta;</FONT></SUB></td>
 
                             <td>G<SUB><FONT face="Raleway">&theta;</FONT></SUB></td>
                             <td>Baseline growth rate (neurite growth rate in absence of NGF concentration gradient)</td>
+
                             <td>Baseline growth rate (neurite growth rate in absence of proNGF concentration gradient)</td>
 
                         </tr>
 
                         </tr>
 
                         <tr>
 
                         <tr>
Line 155: Line 155:
 
                 <div class="block separator"></div>
 
                 <div class="block separator"></div>
  
             <!-- First Onglet Production of NGF-->
+
             <!-- First Onglet Production of proNGF-->
 
                 <div class="block full bothContent">
 
                 <div class="block full bothContent">
 
                     <div class="block dropDown" id="Production">
 
                     <div class="block dropDown" id="Production">
                         <h4>NGF Production by genetically modified <i>E. coli</i></h4>
+
                         <h4>proNGF Production by genetically modified <i>E. coli</i></h4>
 
                     </div>
 
                     </div>
  
Line 164: Line 164:
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h1 style="padding-top: 50px;">NGF Production by our genetically modified <i>E. coli</i></h1>
+
                             <h1 style="padding-top: 50px;">proNGF Production by genetically modified <i>E. coli</i></h1>
                             <p><i>Our aim is to obtain the best optimized NGF concentration in our system to regulate nerve growth. In order to achieve this, we first simulate the production and secretion of our recombinant NGF by transformed <i>E. coli</i>.  This will help the wet lab to optimize the induction and obtain the desired concentration. It will also allow us to check whether we can theoretically obtain the optimal concentration for neurite growth.</i></p>
+
                             <p><i>As we want to obtain the best fitted proNGF concentration, we first simulate the production and secretion of our recombinant proNGF by transformed E. coli, in order to help the wetlab to optimize the induction and obtain the desired concentration, and to check whether we can theoretically obtain the optimal concentration for neurite growth.</i></p>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
 
                             <h3>Model Description</h3>
 
                             <h3>Model Description</h3>
                             <p>In this model, we included transcription, translation, translocation through <i>E. coli</i>’s membrane, protein folding and mRNA and protein degradation in the cytoplasm and medium. NGF synthesis is put under a <i>T7</i> promoter repressed by LacI, so we also modelled the IPTG induction, an analogue of lactose (allolactose). Finally, NGF is secreted to the medium through a Type I secretion system in which the export signal peptide is not cleaved during translocation. Our Biobrick is design to synthetize and export TEV protease in order to cleave the signal peptide and thus produce functional NGF. </p>
+
                             <p>In this model, we include transcription, translation, translocation through E. coli  membrane, protein folding and mRNA and protein degradation in cytoplasm and medium. proNGF synthesis is placed under Plac promoter, so we also modelled the IPTG induction. Finally, proNGF is secreted to the medium through Type I secretion system in which the export signal peptide is not cleaved during translocation. Our Biobrick is design to synthetize and export TEV protease in order to cleave signal peptide and thus produce functional proNGF.</p>
                             <p>The molecular mechanisms included in our model appear in the following scheme:</p>
+
                             <p>The molecular mechanism included in our model appears schematically in:</p>
                            <img src="">
+
                            <div class="legend"><b>Figure 1: </b></div>
+
 
                         </div>
 
                         </div>
 
                         <div class="block two-third">
 
                         <div class="block two-third">
Line 202: Line 200:
 
                                 <tr>
 
                                 <tr>
 
                                     <td><b>m</b></td>
 
                                     <td><b>m</b></td>
                                     <td>mRNA for TEV and NGF</td>
+
                                     <td>mRNA for TEV and proNGF</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
Line 209: Line 207:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>c</sub></b></td>
+
                                     <td><b>proNGF<sub>c</sub></b></td>
                                     <td>NGF in cytoplasm</td>
+
                                     <td>proNGF in cytoplasm</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
Line 218: Line 216:
 
                                 <tr>
 
                                 <tr>
 
                                     <td><b>(N-T)<sub>c</sub></b></td>
 
                                     <td><b>(N-T)<sub>c</sub></b></td>
                                     <td>NGF-TEV complex in cytoplasm</td>
+
                                     <td>proNGF-TEV complex in cytoplasm</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>cc</sub></b></td>
+
                                     <td><b>proNGF<sub>cc</sub></b></td>
                                     <td>Cleaved NGF in cytoplasm, cannot be exported</td>
+
                                     <td>Cleaved proNGF in cytoplasm, cannot be exported</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>t</sub></b></td>
+
                                     <td><b>proNGF<sub>t</sub></b></td>
                                     <td>NGF bound to transporter channel</td>
+
                                     <td>proNGF bound to transporter channel</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
Line 237: Line 235:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>um</sub></b></td>
+
                                     <td><b>proNGF<sub>um</sub></b></td>
                                     <td>Unfolded NGF in medium with export peptide</td>
+
                                     <td>Unfolded proNGF in medium with export peptide</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>m</sub></b></td>
+
                                     <td><b>proNGF<sub>m</sub></b></td>
                                     <td>Folded NGF in medium with export peptide</td>
+
                                     <td>Folded proNGF in medium with export peptide</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
 
                                     <td><b>N-T<sub>m</sub></b></td>
 
                                     <td><b>N-T<sub>m</sub></b></td>
                                     <td>Complex between NGF with export peptide and functional TEV</td>
+
                                     <td>Complex between proNGF with export peptide and functional TEV</td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
Line 253: Line 251:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td><b>NGF<sub>f</sub></b></td>
+
                                     <td><b>proNGF<sub>f</sub></b></td>
                                     <td>Functional NGF in the medium</td>
+
                                     <td>Functional proNGF in the medium</td>
 
                                 </tr>
 
                                 </tr>
 
                             </table>
 
                             </table>
Line 260: Line 258:
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h4 style="text-align: left;">1. NGF and TEV synthesis in the cytoplasm</h4>
+
                             <h4 style="text-align: left;">1. proNGF and TEV synthesis in the cytoplasm</h4>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>The synthesis of NGF and TEV is placed under the control of the <i>Plac</i> (T7) promoter. The promoter can be in two different states: off (Po) when the lacO site is occupied by the repressor <i>lacI</i>, preventing RNA polymerase from binding and thus preventing transcription, or free (P<sub>f</sub>) thanks to IPTG binding to the repressor, and thus freeing the operator site. We assume that one IPTG molecule binds with one repressor molecule (one dimer per site, with two sites dimerizing, therefore 4 lactose or IPTG molecules required), freeing the promoter and restoring RNA polymerase binding capacity. </p>
+
                             <p>The synthesis of proNGF and TEV is placed under the control of Plac promoter. The promoter can be in two different states: occupied (Po) by the repressor lacI, preventing RNA polymerase from binding and thus preventing transcription, or free (Pf) thanks to IPTG binding to the repressor. We assume that one IPTG molecule binds with one repressor molecule, freeing the promoter and restoring RNA polymerase binding capacity. The real mechanism of promoter Plac is more complex, as described in [1], but this simplification is sufficient for our model.</p>
                            <p>The real mechanism of promoter <i>Plac</i> is more complex, as described in <sup>[1]</sup>, but this simplification is sufficient for our model.</p>
+
                        </div>
                             <img src="">
+
                        <div class="block one-third center">
                             <p>The transport of IPTG from outside the cell to cytoplasm is considered to be only due to free diffusion through the membrane by two first order reaction with the same kinetic constant. IPTG is not considered to be degraded neither in the cytoplasm nor in the medium.<p>
+
                             <img src="https://static.igem.org/mediawiki/2018/4/41/T--Pasteur_Paris--eq1.png" style="max-width: 200px">
                            <img src="">
+
                        </div>
                             <p>For the TEV and NGF transcription, we use a first-order reaction where the rate of mRNA production (m) depends on the concentration of the free promoter (P<sub>f</sub>). </p>
+
                        <div class="block full">
                             <img src="">
+
                             <p>The transport of IPTG from outside the cell to cytoplasm is considered to be only due to free diffusion through the membrane by two first order reaction with the same kinetic constant.<p>
                             <p>For the TEV and NGF translation, we first consider binding of ribosomes to ribosome binding site (the same association constant is used since the RBSs are the same), and then translation rate is proportional to the protein length. Since TEV and NGF have approximately the length, we consider only one translation rate β.</p>
+
                        </div>
                             <img src="">
+
                        <div class="block one-third center">
                             <p>Even though it still has an export peptide, TEV is assumed to be functional in the cytoplasm (although less functional than if it had no export peptide). Since NGF has TEV cleaving site between the coding sequence and the export peptide, a fraction of NGF is cleaved inside the cytoplasm and thus cannot be secreted. </p>
+
                            <img src="https://static.igem.org/mediawiki/2018/5/5e/T--Pasteur_Paris--eq2.png" style="max-width: 120px">
                            <p>We use a simple model to simulate TEV kinetics: TEV recognizes the signal sequence ENLYFQ, bind to its substrate and then cleaves the export peptide. This process can thus be modeled by the following equations:</p>
+
                        </div>
                            <p></p>
+
                        <div class="block full">
                             <img src="">
+
                            <p>IPTG is not considered to be degraded neither in the cytoplasm nor in the medium.</p>
                            <p>K<sub>1</sub>, k<sub>-1</sub> and k<sub>2</sub> are taken lower than constants found in literature, in order to model the fact that TEV still has its signal peptide and is consequently less functional than usually.</p>
+
                             <p>For the TEV and proNGF transcription, we use a first-order reaction where the rate of mRNA production (m) depends on the concentration of the free promoter (Pf).</p>
 +
                        </div>
 +
                        <div class="block one-third center">
 +
                             <img src="https://static.igem.org/mediawiki/2018/c/c1/T--Pasteur_Paris--eq3.png" style="max-width: 200px">
 +
                        </div>
 +
                        <div class="block full">
 +
                             <p>For the TEV and proNGF translation, we first consider binding of ribosomes to ribosome binding site (the same association constant is used since the r.b.s. are the same), and then translation rate is proportional to the protein length. Since TEV and proNGF have approximately the length, we consider only one translation rate β.</p>
 +
                        </div>
 +
                        <div class="block one-third center">
 +
                             <img src="https://static.igem.org/mediawiki/2018/8/8b/T--Pasteur_Paris--eq4.png">
 +
                        </div>
 +
                        <div class="block full">
 +
                             <p>Even though it still has an export peptide, TEV is assumed to be functional in the cytoplasm (although less functional than if it had no export peptide). Since proNGF has TEV cleaving site between the coding sequence and the export peptide, a fraction of proNGF is cleaved inside the cytoplasm and thus cannot be secreted. We use a simple model to simulate TEV kinetics: TEV recognizes the signal sequence ENLYFQ, bind to its substrate and then cleave the export peptide. This process can thus be modeled by the following equations:</p>
 +
                        </div>
 +
                        <div class="block one-third center">
 +
                             <img src="https://static.igem.org/mediawiki/2018/4/49/T--Pasteur_Paris--eq5.png">
 +
                        </div>
 +
                        <div class="block full">
 +
                            <p>K1, k-1 and k2 are taken lower than constants found in literature, in order to model the fact that TEV still has its signal peptide and is consequently less functional than usually.</p>
 
                         </div>
 
                         </div>
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h4 style="text-align: left;">2. NGF and TEV secretion to the medium</h4>
+
                             <h4 style="text-align: left;">2. proNGF and TEV secretion to the medium</h4>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>The transport of NGF and TEV with their export signal peptide from inside the cell to the medium is assumed to follow Michaelis-Menten enzymatic kinetics in which the transporter channel (composed of HlyB in the inner membrane, bound to HlyD and recruiting TolC in the outer membrane) plays the role of the enzyme and intracellular protein the role of the substrate.</p>
+
                             <p>The transport of proNGF and TEV with their export signal peptide from inside the cell to the medium is assumed to follow Michaelis-Menten enzymatic kinetics in which the transporter channel (composed of HlyB in the inner membrane, bound to HlyD and recruiting TolC in the outer membrane) plays the role of the enzyme and intracellular protein the role of the substrate.</p>
                             <p>Each protein (NGF and TEV) via its export signal peptide HlyA can bind to the HlyB-HlyD complex pore, forming a protein-transporter complex (NGFt or TEVt). Translocation correspond to the dissociation of this complex, resulting in restoring a free transporter and secreting NGF or TEV in the medium (NGF<sub>um</sub> and TEV<sub>m</sub>), which stand for the products.</p>
+
                        </div>
                             <img src="">
+
                        <div class="block two-third">
 +
                             <p>Each protein (proNGF and TEV) via its export signal peptide HlyA can bind to the HlyB-HlyD complex pore, forming a protein-transporter complex (proNGFt or TEVt). Translocation correspond to the dissociation of this complex, resulting in restoring a free transporter and secreting proNGF or TEV in the medium (proNGFum and TEVm), which stand for the products.</p>
 +
                        </div>
 +
                        <div class="block one-third">
 +
                             <img src="https://static.igem.org/mediawiki/2018/3/34/T--Pasteur_Paris--eq6.png" style="max-width: 250px">
 
                         </div>
 
                         </div>
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
Line 292: Line 312:
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>This model is valid for one bacterial cell, but for our model to fit with our proof of concept system, which is a microfluidic chip chamber containing 100 μL of bacterial culture, we need to integrate the number of bacteria contained in the chamber. Therefore, our model helps to determine which is the most accurate bacteria amount required to produce the appropriate NGF concentration.</p>
+
                             <p>This model is valid for one bacterial cell, but for our model to fit with our proof of concept system, which is a microfluidic chip chamber containing 100 μL of bacterial culture, we need to integrate the number of bacteria contained in the chamber. Therefore, our model helps to determine which is the most accurate bacteria amount we need to put in our chip to produce the appropriate proNGF concentration.</p>
                            <p>Since in the lab, our easiest way to determine number of bacteria is measuring OD600, we determined which is the best OD600 for the final proof-of-concept experiment, considering that an OD600 value of 1 corresponds to 8.10<sup>8</sup> bacteria units.</p>
+
 
                         </div>
 
                         </div>
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h4 style="text-align: left;">4. NGF folding and export peptide cleavage by TEV</h4>
+
                             <h4 style="text-align: left;">4. proNGF folding and export peptide cleavage by TEV</h4>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>Once in the medium, both NGF and TEV are still bound to the export signal peptide HlyA. We assume there is a very small amount of functional TEV, that is sufficient to cleave TEV signal peptide, producing more functional TEV. </p>
+
                             <p>Once in the medium, both proNGF and TEV are still bound to the export signal peptide HlyA. We assume there is a very small amount of functional TEV, that is sufficient to cleave TEV signal peptide, producing more functional TEV.</p>
                             <p>As for the transporter, we use a simple model in which TEV recognizes the signal sequence ENLYFQ, bound to its substrate (which can be either NGF with its export peptide or another TEV molecule with its own export peptide) and then cleaves the export peptide. This process can thus be modeled by the following equations:</p>
+
                             <p>As for the transporter, we use a simple model in which TEV recognizes the signal sequence ENLYFQ, bind to its substrate (which can be either proNGF with its export peptide or TEV with its export peptide) and then cleave the export peptide. This process can thus be modeled by the following equations:</p>
                             <img src="">
+
                        </div>
 +
                        <div class="block one-third center">
 +
                             <img src="https://static.igem.org/mediawiki/2018/2/2b/T--Pasteur_Paris--eq7.png">
 
                         </div>
 
                         </div>
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
 
                         <div class="block title">
 
                         <div class="block title">
 
                             <h4 style="text-align: left;">5. mRNA and protein degradation</h4>
 
                             <h4 style="text-align: left;">5. mRNA and protein degradation</h4>
 +
                        </div>
 +
                        <div class="block two-third center">
 +
                            <p>Finally, in cytoplasm and in the medium, mRNA and protein are degraded and all degradations are assumed to follow first-order kinetic reactions.</p>
 +
                            <img src="https://static.igem.org/mediawiki/2018/3/3b/T--Pasteur_Paris--eq8.png" style="max-width: 150px">
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                            <p>Finally, in the cytoplasm and in the medium, mRNAs and proteins are degraded and all degradations are assumed to follow first-order kinetic reactions.</p>
 
                            <img src="">
 
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
 
                             <h3>MODEL PARAMETRISATION</h3>
 
                             <h3>MODEL PARAMETRISATION</h3>
                             <p>From these equations, we obtained a system of differential equations mostly based on mass action kinetics (Ref.)(GET IT HERE). We numerically solved the ordinary differential equations system using Euler method implemented in Python. The constants we used were mainly determined from literature AND are given in table: </p>
+
                             <p>From these equations, we obtained a system of differential equations mostly based on mass action kinetics (GET IT HERE). We numerically solveD the ordinary differential equations system using Euler method implemented in Python. The constants we used were mainly determined from literature AND are given in table </p>
 
                             <table class="tableData" style="margin: auto;">
 
                             <table class="tableData" style="margin: auto;">
 
                                 <tr>
 
                                 <tr>
Line 345: Line 368:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td></td>
+
                                     <td>&alpha;</td>
 
                                     <td>Transcription rate</td>
 
                                     <td>Transcription rate</td>
 
                                     <td>2</td>
 
                                     <td>2</td>
Line 366: Line 389:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td></td>
+
                                     <td>&beta;</td>
 
                                     <td>Translation rate</td>
 
                                     <td>Translation rate</td>
 
                                     <td>4</td>
 
                                     <td>4</td>
Line 376: Line 399:
 
                                     <td>Association rate of TEV with its substrate in the cytoplasm</td>
 
                                     <td>Association rate of TEV with its substrate in the cytoplasm</td>
 
                                     <td>7.8 x 10<sup>-7</sup></td>
 
                                     <td>7.8 x 10<sup>-7</sup></td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 383: Line 406:
 
                                     <td>Dissociation rate of TEV with its substrate in the cytoplasm</td>
 
                                     <td>Dissociation rate of TEV with its substrate in the cytoplasm</td>
 
                                     <td>6 x 10<sup>-4</sup></td>
 
                                     <td>6 x 10<sup>-4</sup></td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 390: Line 413:
 
                                     <td>Cleaving rate by TEV in cytoplasm</td>
 
                                     <td>Cleaving rate by TEV in cytoplasm</td>
 
                                     <td>1.38 x 10<sup>-2</sup></td>
 
                                     <td>1.38 x 10<sup>-2</sup></td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
 
                                     <td>k<sub>3</sub></td>
 
                                     <td>k<sub>3</sub></td>
                                     <td>Association rate of NGF and TEV with transmembrane transporter</td>
+
                                     <td>Association rate of proNGF and TEV with transmembrane transporter</td>
 
                                     <td>6 x 10<sup>-4</sup></td>
 
                                     <td>6 x 10<sup>-4</sup></td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
 
                                     <td>k<sub>-3</sub></td>
 
                                     <td>k<sub>-3</sub></td>
                                     <td>Dissociation rate of NGF and TEV with transporter</td>
+
                                     <td>Dissociation rate of proNGF and TEV with transporter</td>
 
                                     <td>2.34</td>
 
                                     <td>2.34</td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 411: Line 434:
 
                                     <td>Translocation rate within the transporter</td>
 
                                     <td>Translocation rate within the transporter</td>
 
                                     <td>2.1</td>
 
                                     <td>2.1</td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
 
                                     <td>k<sub>f</sub></td>
 
                                     <td>k<sub>f</sub></td>
                                     <td>NGF folding rate in the medium</td>
+
                                     <td>proNGF folding rate in the medium</td>
 
                                     <td>0.28</td>
 
                                     <td>0.28</td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 425: Line 448:
 
                                     <td>Association rate of TEV with its substrate in the medium</td>
 
                                     <td>Association rate of TEV with its substrate in the medium</td>
 
                                     <td>7.8 x 10<sup>-5</sup></td>
 
                                     <td>7.8 x 10<sup>-5</sup></td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 432: Line 455:
 
                                     <td>Dissociation rate of TEV with its substrate in the medium</td>
 
                                     <td>Dissociation rate of TEV with its substrate in the medium</td>
 
                                     <td>0.06</td>
 
                                     <td>0.06</td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup>nM</td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
Line 439: Line 462:
 
                                     <td>Cleaving rate by TEV in the medium</td>
 
                                     <td>Cleaving rate by TEV in the medium</td>
 
                                     <td>1.38</td>
 
                                     <td>1.38</td>
                                     <td></td>
+
                                     <td>min<sup>-1</sup>nM<sup>-1</sup></td>
 
                                     <td></td>
 
                                     <td></td>
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td></td>
+
                                     <td>&delta;<sub>m</sub></td>
 
                                     <td>mRNA degradation rate</td>
 
                                     <td>mRNA degradation rate</td>
 
                                     <td>0.462</td>
 
                                     <td>0.462</td>
Line 450: Line 473:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td></td>
+
                                     <td>&delta;<sub>pc</sub></td>
 
                                     <td>Protein degradation rate in cytoplasm</td>
 
                                     <td>Protein degradation rate in cytoplasm</td>
 
                                     <td>0.2</td>
 
                                     <td>0.2</td>
Line 457: Line 480:
 
                                 </tr>
 
                                 </tr>
 
                                 <tr>
 
                                 <tr>
                                     <td></td>
+
                                     <td>&delta;<sub>pm</sub></td>
 
                                     <td>Protein degradation rate in extracelular medium</td>
 
                                     <td>Protein degradation rate in extracelular medium</td>
 
                                     <td>0.1</td>
 
                                     <td>0.1</td>
Line 467: Line 490:
 
                         <div class="block separator"></div>
 
                         <div class="block separator"></div>
 
                         <div>
 
                         <div>
                             <h3>MODEL RESULTS AND ANALYSIS</h3>
+
                             <h3>MODEL RESULTS</h3>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>We determined the temporal evolution of secreted NGF concentration in the medium, in order to get the u(0,t) term used in our following diffusion model.</p>               
+
                             <p>We determined the temporal evolution of secreted proNGF concentration in the medium, in order to get the u(0,t) term used in our following diffusion model.</p>               
 
                         </div>
 
                         </div>
 
                         <div class="block half">
 
                         <div class="block half">
 
                             <img src="https://static.igem.org/mediawiki/2018/4/43/T--Pasteur_Paris--model1.png">
 
                             <img src="https://static.igem.org/mediawiki/2018/4/43/T--Pasteur_Paris--model1.png">
                            <div class="legend"><b>Figure 2: </b>Comparison of cytoplasmic and secreted NGF with a single-cell model (IPTG induction 1 mM</div>
 
 
                         </div>
 
                         </div>
 
                         <div class="block half">
 
                         <div class="block half">
                             <p>After the initial dynamics, concentration of secreted NGF quickly reaches <b>a steady state</b>, which is then only driven by the bacterial population dynamics. If we consider a bacterial culture in stationary phase, we can consequently consider that the initial NGF concentration is constant. Our model predicts that the majority of recombinant protein remains cytoplasmic or is secreted but not functional (we consider as “non-functional NGF” the recombinant proteins that are not folded or still have a C-terminal HlyA signal peptide), as it appears in Fig1.</p>
+
                             <p> After the initial dynamics, concentration of secreted proNGF quickly reaches a <b>steady state </b>, which is then only driven by the bacterial population dynamics. If we consider a bacterial culture in stationary phase, we can consequently consider that the initial proNGF concentration is constant. Our model predicts that the majority of recombinant protein remains cytoplasmic or is secreted but not functional (we consider as "non-functional proNGF" the recombinant proteins that are not folded or still have a C-terminal HlyA signal peptide), as it appears in Fig1.</p>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>The aim of this first model is to demonstrate that we can expect an appropriate secreted recombinant NGF concentration to observe neurite growth. However, we had to make several assumptions to parametrize the model. We scanned different parameter values for the values we assumed (such as number of transporters or kinetic parameters for translocation) in order to check the range of NGF amount we can reasonably expect. We also studied influence of IPTG induction and number of bacteria, since they are parameters our wetlab can control to best fit recombinant NGF secretion with what we need.</p>               
+
                             <p>The aim of this first model is to demonstrate that we can expect an appropriate secreted recombinant proNGF concentration to observe neurite growth. However, we had to make several assumptions to parametrize the model. We scanned different parameter values for the values we assumed (such as number of transporters or kinetic parameters for translocation) in order to check the range of proNGF amount we can reasonably expect. We also studied influence of IPTG induction and number of bacteria, since they are parameters our wetlab can control to best fit recombinant proNGF secretion with what we need.</p>               
 
                         </div>
 
                         </div>
 
                         <div class="block title">
 
                         <div class="block title">
Line 486: Line 508:
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in<sup>[5]</sup>. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of NGF concentration we can expect.</p>     
+
                             <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of proNGF concentration we can expect.</p>     
                             <p>The following graph shows the predicted NGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p>             
+
                             <p>The following graph shows the predicted proNGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p>             
 
                         </div>
 
                         </div>
 
                         <div class="block two-third center">
 
                         <div class="block two-third center">
 +
                     
 
                             <img src="https://static.igem.org/mediawiki/2018/d/d8/T--Pasteur_Paris--model2.png">
 
                             <img src="https://static.igem.org/mediawiki/2018/d/d8/T--Pasteur_Paris--model2.png">
                            <div class="legend"><b>Figure 3: </b></div>
 
 
                         </div>
 
                         </div>
                         <div class="block two-third">
+
                         <div class="block full">
                            <p>As expected, the more transporters the cell has, the more recombinant NGF is secreted, but the amount of functional secreted NGF (in blue) remains limited due to TEV protease cleaving efficiency. </p>
+
                            <p>We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of proNGF concentration we can expect.</p>    
                            <p>Taking in account the number of <i>E. coli</i> cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional NGF of 1 nM, which correspond to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth.
+
                            <p>The following graph shows the predicted proNGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):</p>            
                            Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem, since we could expect 5 nM functional NGF if the totality of the secreted NGF was cleaved. </p>
+
 
                         </div>
 
                         </div>
                         <div class="block title"><h3 style="text-align: left;">Translocation rate influence</h3></div>
+
                         <div class="block title">
                         <div class="block half">
+
                            <h4 style="text-align: left;">Influence of translocation rate</h4>
 +
                        </div>
 +
                         <div class="block one-third">
 +
                     
 
                             <img src="https://static.igem.org/mediawiki/2018/8/8f/T--Pasteur_Paris--model3.png">
 
                             <img src="https://static.igem.org/mediawiki/2018/8/8f/T--Pasteur_Paris--model3.png">
                            <div class="legend"><b>Figure 4: </b></div>
 
 
                         </div>
 
                         </div>
                         <div class="block half">
+
                         <div class="block two-third">
                            <p>Kinetic parameters for translocation through HlyB-HlyD-TolC are not yet really documented. We assumed its value from literature <sup>[5]</sup> but it could significantly vary, according to the conformation of TEV and NGF which could affect translocation rate.</p>
+
                            <p>As expected, the more transporters the cell has, the more recombinant proNGF is secreted, but the amount of functional secreted proNGF (in blue) remains limited due to TEV protease cleaving efficiency. </p>
                        </div>
+
                            <p>Taking in account the number of E. coli cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional proNGF of 1 nM, which correspond to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth.
                        <div class="block full">
+
Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem, since we could expect 5 nM functional proNGF if the totality of the secreted proNGF was cleaved.  
                            <p>k<sub>4</sub> estimated value does have a real impact on the total amount of secret NGF, as evidenced by the graph (given here for an IPTG induction level of 1 mM, and 500 transporters/cell). Indeed, when k4 varies from 0.5 min<sup>-1</sup> to 4 min<sup>-1</sup>, the amount of total secreted NGF doubles from 60 ng/mL to 120 ng/mL.</p>
+
</p>
 
                         </div>
 
                         </div>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h4 style="text-align: left;">Influence of IPTG induction level</h4>
+
                             <h4 style="text-align: left;">IPTG induction level</h4>
 
                         </div>
 
                         </div>
                         <div class="block half">
+
                         <div class="block two-third">
                             <p> One of the parameters our wetlab team is able to adjust is IPTG induction in the microchannel chip in order to optimize the obtained NGF concentration. Consequently, we studied the dependence of secreted NGF with IPTG initial concentration. </p>
+
                             <p> One of the parameters our wetlab team is able to adjust is IPTG induction in the microchannel chip in order to optimize the obtained proNGF concentration. Consequently, we studied the dependence of secreted proNGF with IPTG initial concentration.</p>
 +
                            <p> As expected the final proNGF concentration (both in the cytoplasm and in extracellular medium) is an increasing function of IPTG induction. As our wetlab did not succeed in quantifying the secreted proNGF, it is hard to figure out whether or not the desired concentration was obtained, but if our assumptions are valid, it could be reached with reasonable IPTG concentrations. Production of proNGF with the tag has been detected by Mass spectrometry.</p>
 
                         </div>
 
                         </div>
                         <div class="block half">
+
                         <div class="block one-third">
 
                             <img src="https://static.igem.org/mediawiki/2018/5/5b/T--Pasteur_Paris--model4.png">
 
                             <img src="https://static.igem.org/mediawiki/2018/5/5b/T--Pasteur_Paris--model4.png">
                        </div>
 
                        <div class="block full">
 
                            <p> As expected the final NGF concentration (both in the cytoplasm and in extracellular medium) is an increasing function of IPTG induction. As our wetlab did not succeed in quantifying the secreted NGF, it is hard to figure out whether or not the desired concentration was obtained, but if our assumptions are valid, it could be reached with reasonable IPTG concentrations. Production of NGF with the tag has been detected by Mass spectrometry.</p>
 
 
                         </div>
 
                         </div>
 
                         <div>
 
                         <div>
                             <h3>CONCLUSION</h3>
+
                             <h3>PERSPECTIVES</h3>
 
                         </div>
 
                         </div>
 
                         <div class="block full">
 
                         <div class="block full">
                             <p>Our model is based on assumptions but it shows that within <b>realistic parameters values</b>, we can reasonably expect to obtain the optimal NGF concentration needed for neurite growth in the microfluidic chamber and it consequently paves the way to a <b>functional proof of concept.</b></p>               
+
                             <p>Our model is based on assumptions but it shows that within <b>realistic parameters values</b>, we can reasonably expect to obtain the optimal proNGF concentration needed for neurite growth in the microfluidic chamber and it consequently paves the way to a functional proof of concept. </p>               
                            <i style="text-align: left;"><p>Next modeling steps:<br>
+
                     
                                <ul>
+
<i style="text-align: left;"><p>Next modeling steps:<br>
                                    <li> It would be worth isolating and <b>quantifying secreted recombinant NGF</b> in order to confront model and experiments, and be able to determine some of the kinetics parameters values we used (such as translocation rate)</li>
+
<ul>
                                    <li> This program is designed to model the microchip proof-of-concept experiment but we will adapt it to our final <b>biofilm</b> device to predict its behavior</li>
+
<li> It would be worth isolating and <b>quantifying secreted recombinant proNGF</b> in order to confront model and experiments, and be able to determine some of the kinetics parameters values we used (such as translocation rate)</li>
                                </ul><br></p></i>
+
<li> This program is designed to model the microchip proof-of-concept experiment but we will adapt it to our final <b>biofilm</b> device to predict its behavior</li>
                            </div>
+
</ul><br></p>
                         <div class="block separator-mark"></div>
+
</i>
                        <div class="block title"><h3>REFERENCES</h3></div>
+
</div>
                        <div class="block full">
+
                         <div class="block separator"></div>
                            <ul style="text-align: left;">
+
                      </div>
                                <li style="list-style-type: decimal;">M. Stamatakis and N. V. Mantzaris, “Comparison of deterministic and stochastic models of the lac operon genetic network,” Biophys. J., vol. 96, no. 3, pp. 887–906, 2009.</li>
+
                                <li style="list-style-type: decimal;">A. Y. Weiße, D. A. Oyarzún, V. Danos, and P. S. Swain, “Mechanistic links between cellular trade-offs, gene expression, and growth,” Proc. Natl. Acad. Sci., vol. 112, no. 9, pp. E1038–E1047, 2015.</li>
+
                                <li style="list-style-type: decimal;">R. Milo, “Useful fundamental BioNumbers handout.doc,” pp. 1–2, 2008.</li>
+
                                <li style="list-style-type: decimal;">M. S. Packer, H. A. Rees, and D. R. Liu, “Phage-assisted continuous evolution of proteases with altered substrate specificity,” Nat. Commun., vol. 8, no. 1, 2017.</li>
+
                                <li style="list-style-type: decimal;">H. Benabdelhak et al., “A specific interaction between the NBD of the ABC-transporter HlyB and a C-terminal fragment of its transport substrate haemolysin A,” J. Mol. Biol., vol. 327, no. 5, pp. 1169–1179, 2003.</li>
+
                            </ul>
+
                        </div>
+
                    </div>
+
 
                 </div>
 
                 </div>
 
                 <div class="block separator"></div>
 
                 <div class="block separator"></div>
  
             <!-- Second Onglet Diffusion of NGF -->
+
             <!-- Second Onglet Diffusion of proNGF -->
 
                 <div class="block full bothContent">
 
                 <div class="block full bothContent">
 
                     <div class="block dropDown" id="Diffusion">
 
                     <div class="block dropDown" id="Diffusion">
                         <h4>NGF diffusion simultation in a given environment</h4>
+
                         <h4>proNGF diffusion simultation in a given environment</h4>
 
                     </div>
 
                     </div>
  
Line 556: Line 569:
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h1 style="padding-top: 50px;">NGF diffusion diffusion in a given environment</h1><br>
+
                             <h1 style="padding-top: 50px;">proNGF diffusion diffusion in a given environment</h1><br>
                             <p><i>We are looking to understand the way the NGF spreads inside the conduit once it is produced. This will help us to determine the NGF concentration u(x,t) (ng.mL<SUP>-1</SUP>) as a function of the distance x (cm) from the production site of NGF.</i></p>
+
                             <p><i>We are looking to understand the way the proNGF spreads inside the conduit once it is produced. This will help us to determine the proNGF concentration u(x,t) (ng.mL<SUP>-1</SUP>) as a function of the distance x (cm) from the production site of proNGF.</i></p>
 
                         </div>
 
                         </div>
 
                         <!-- Fick's diffusion law -->
 
                         <!-- Fick's diffusion law -->
 
                             <div class="block full">
 
                             <div class="block full">
 
                                 <h3>Fick’s diffusion law </h3>
 
                                 <h3>Fick’s diffusion law </h3>
                                 <p>To simulate NGF diffusion in the microfluidic chip we consider a unidimensional conduit of axe x and a constant concentration of NGF introduced at one end of the canals. In this part, diffusion is assumed to be the only mechanism producing the gradient decay in the micro canals. We can model the diffusion characteristics of NGF with Fick’s second law of diffusion:<br>
+
                                 <p>To simulate proNGF diffusion in the microfluidic chip we consider a unidimensional conduit of axe x and a constant concentration of proNGF introduced at one end of the canals. In this part, diffusion is assumed to be the only mechanism producing the gradient decay in the micro canals. We can model the diffusion characteristics of proNGF with Fick’s second law of diffusion:<br>
 
                                 <span style="position: relative; display: inline-block; width: 100%; text-align: center;">   
 
                                 <span style="position: relative; display: inline-block; width: 100%; text-align: center;">   
 
                                     <span class="frac">
 
                                     <span class="frac">
Line 597: Line 610:
 
                                 </span>  
 
                                 </span>  
 
                                 </p>
 
                                 </p>
                                 <p>Indeed, in the same material, the rate transfer of the diffusing NGF through the cross section of the micro canal is proportional to the concentration gradient normal to the cross section. It is assumed that the leakage of NGF at both ends of the micro canal is negligible because there should be little NGF at the ends the micro canals compared to the total amount of NGF and second because of a low NGF diffusion rate.
+
                                 <p>Indeed, in the same material, the rate transfer of the diffusing proNGF through the cross section of the micro canal is proportional to the concentration gradient normal to the cross section. It is assumed that the leakage of proNGF at both ends of the micro canal is negligible because there should be little proNGF at the ends the micro canals compared to the total amount of proNGF and second because of a low proNGF diffusion rate.
                                 The equation (1) can be solved with Euler’s method and we find the NGF concentration gradient at the position x and time t. The MatLab code is the following:</p>
+
                                 The equation (1) can be solved with Euler’s method and we find the proNGF concentration gradient at the position x and time t. The MatLab code is the following:</p>
 
                             </div>
 
                             </div>
 
                             <div class="block half">
 
                             <div class="block half">
Line 604: Line 617:
 
                             </div>
 
                             </div>
 
                             <div class="block half">
 
                             <div class="block half">
                                 <p>We displayed our results showing a decrease of the concentration of NGF (u(x,t)) depending on the distance of the conduit x.</p>
+
                                 <p>We displayed our results showing a decrease of the concentration of proNGF (u(x,t)) depending on the distance of the conduit x.</p>
 
                                 <img src="https://static.igem.org/mediawiki/2018/f/f3/T--Pasteur_Paris--code-plot.1.svg">
 
                                 <img src="https://static.igem.org/mediawiki/2018/f/f3/T--Pasteur_Paris--code-plot.1.svg">
 
                             </div>
 
                             </div>
Line 615: Line 628:
 
                                     </tr>
 
                                     </tr>
 
                                     <tr>
 
                                     <tr>
                                         <td>Diffusion coefficient of NGF : Cdiff</td>
+
                                         <td>Diffusion coefficient of proNGF : Cdiff</td>
 
                                         <td>7,8*10<SUP>-7</SUP> cm<SUP>2</SUP>.s<SUP>-1</SUP></td>
 
                                         <td>7,8*10<SUP>-7</SUP> cm<SUP>2</SUP>.s<SUP>-1</SUP></td>
 
                                     </tr>
 
                                     </tr>
Line 636: Line 649:
 
                         <!-- Optimisation of the gradient -->
 
                         <!-- Optimisation of the gradient -->
 
                             <div class="block full">
 
                             <div class="block full">
                                 <h3>Optimisation of the NGF gradient</h3>
+
                                 <h3>Optimisation of the proNGF gradient</h3>
 
                             </div>
 
                             </div>
 
                             <div class="block half">
 
                             <div class="block half">
                                 <p>To optimize the accuracy of the NGF gradient we interpolate the curve u(x)=f(x). Consequently, we obtain the f polynomial function easier to derive and a polynomial function of the gradient with a better accuracy than with the first method. The program is the following:</p>
+
                                 <p>To optimize the accuracy of the proNGF gradient we interpolate the curve u(x)=f(x). Consequently, we obtain the f polynomial function easier to derive and a polynomial function of the gradient with a better accuracy than with the first method. The program is the following:</p>
 
                             </div>
 
                             </div>
 
                             <div class="block half">
 
                             <div class="block half">
Line 664: Line 677:
 
                                 <p>Observations:<br>
 
                                 <p>Observations:<br>
 
                                     <ol style="text-align: left; list-style-type: disc;">
 
                                     <ol style="text-align: left; list-style-type: disc;">
                                         <li>When the length of the conduit increases but the duration of the experiment is fixed the NGF doesn’t have the time to diffuse in the entire conduit.</li>
+
                                         <li>When the length of the conduit increases but the duration of the experiment is fixed the proNGF doesn’t have the time to diffuse in the entire conduit.</li>
                                         <li>For instance, with a t_final= 3 600s the NGF molecules can’t diffuse further than x=0.2cm.</li>
+
                                         <li>For instance, with a t_final= 3 600s the proNGF molecules can’t diffuse further than x=0.2cm.</li>
 
                                     </ol>
 
                                     </ol>
 
                                 </p>
 
                                 </p>
Line 675: Line 688:
 
                                 <p>The higher the diffusion coefficient, the faster the molecules will diffuse in the conduit. Indeed, we observe in the model that with a fixed t_final:<br>
 
                                 <p>The higher the diffusion coefficient, the faster the molecules will diffuse in the conduit. Indeed, we observe in the model that with a fixed t_final:<br>
 
                                     <ol style="text-align: left; list-style-type: disc;">
 
                                     <ol style="text-align: left; list-style-type: disc;">
                                         <li>NGF concentration at x=0.1 cm is 675 000 ng.ml<SUP>-1</SUP> for a diffusion coefficient C<SUB>diff</SUB> = 15*10<SUP>-7</SUP> cm<SUP>2</SUP>.s<SUP>-1</SUP></li>
+
                                         <li>proNGF concentration at x=0.1 cm is 675 000 ng.ml<SUP>-1</SUP> for a diffusion coefficient C<SUB>diff</SUB> = 15*10<SUP>-7</SUP> cm<SUP>2</SUP>.s<SUP>-1</SUP></li>
                                         <li>For a diffusion coefficient two times lower, the NGF concentration is 380 ng.ml<SUP>1</SUP></li>
+
                                         <li>For a diffusion coefficient two times lower, the proNGF concentration is 380 ng.ml<SUP>1</SUP></li>
 
                                     </ol>
 
                                     </ol>
 
                                 </p>
 
                                 </p>
Line 682: Line 695:
 
                             </div>
 
                             </div>
 
                             <div class="block full">
 
                             <div class="block full">
                                 <p>When the time length of the experiment lasts from 1 hour to 2 hours, the concentration of NGF is almost homogeneous in the entire conduit. At the end of the conduit, for x= 0.1 cm, the concentration of NGF equals to 910 ng.ml-1 when t_final= 7 200s whereas the concentration is 3 900 ng.ml<SUP>-1</SUP> when t_final=3 600s. </p>
+
                                 <p>When the time length of the experiment lasts from 1 hour to 2 hours, the concentration of proNGF is almost homogeneous in the entire conduit. At the end of the conduit, for x= 0.1 cm, the concentration of proNGF equals to 910 ng.ml-1 when t_final= 7 200s whereas the concentration is 3 900 ng.ml<SUP>-1</SUP> when t_final=3 600s. </p>
                                 <p>It is interesting to observe that when the duration of the experiment increases, the stationary regime is established: the NGF concentration in the conduit becomes independent of the position and time. Indeed, the concentation gradient of NGF in the conduit moves toward 0 for any position. </p>
+
                                 <p>It is interesting to observe that when the duration of the experiment increases, the stationary regime is established: the proNGF concentration in the conduit becomes independent of the position and time. Indeed, the concentation gradient of proNGF in the conduit moves toward 0 for any position. </p>
 
                             </div>
 
                             </div>
 
                             <div class="block two-third">
 
                             <div class="block two-third">
Line 698: Line 711:
 
                 <div class="block full bothContent">
 
                 <div class="block full bothContent">
 
                     <div class="block dropDown" id="Growth">
 
                     <div class="block dropDown" id="Growth">
                         <h4>Neurons growth in the presence of NGF</h4>
+
                         <h4>Neurons growth in the presence of proNGF</h4>
 
                     </div>
 
                     </div>
  
Line 704: Line 717:
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 
                         <div class="block title">
 
                         <div class="block title">
                             <h1>Neurons growth in the presence of NGF</h1><br>
+
                             <h1>Neurons growth in the presence of proNGF</h1><br>
                             <p><i>In this part our goal is to determine the length of the neurite outgrowth (g(t)) in response to the gradient concentration of NGF.</i></p>
+
                             <p><i>In this part our goal is to determine the length of the neurite outgrowth (g(t)) in response to the gradient concentration of proNGF.</i></p>
 
                         </div>
 
                         </div>
 
                         <!-- Explanation of the model -->
 
                         <!-- Explanation of the model -->
Line 713: Line 726:
 
                             <div class="block full">
 
                             <div class="block full">
 
                                 <h5 style="text-align: left">Baseline growth rate: </h5>
 
                                 <h5 style="text-align: left">Baseline growth rate: </h5>
                                 <p>In our mathematical model, neurites grow at a constant growth rate defined as the baseline growth rate G0  when the concentration is below the threshold (assumed to be 995 ng.mL<SUP>-1</SUP>). Neurites stop growing when the NGF concentration is higher than the threshold concentration. The value for the baseline growth rate G0 has been fixed at 20 <FONT face="Raleway">&mu;</FONT>m.h<SUP>-1</SUP> for this model. </p>
+
                                 <p>In our mathematical model, neurites grow at a constant growth rate defined as the baseline growth rate G0  when the concentration is below the threshold (assumed to be 995 ng.mL<SUP>-1</SUP>). Neurites stop growing when the proNGF concentration is higher than the threshold concentration. The value for the baseline growth rate G0 has been fixed at 20 <FONT face="Raleway">&mu;</FONT>m.h<SUP>-1</SUP> for this model. </p>
 
                                 <h5 style="text-align: left">Concentration Gradient:</h5>
 
                                 <h5 style="text-align: left">Concentration Gradient:</h5>
 
                                 <p>The extent of directional guidance is gradient steepness-dependent provided that the concentration gradient reaches the threshold value. The gradient factor k is a gradient steepness-dependent positive effect on the neurite growth rate. </p>
 
                                 <p>The extent of directional guidance is gradient steepness-dependent provided that the concentration gradient reaches the threshold value. The gradient factor k is a gradient steepness-dependent positive effect on the neurite growth rate. </p>
                                 <p>In this model we assume that the baseline growth rate and the growth rate in the presence of concentration gradient follow an additive rule. This can be explained by the fact that both the NGF concentration and the its gradient can both individually contribute to neurite extension. The equation governing neurite outgrowth thus becomes:<br><br>
+
                                 <p>In this model we assume that the baseline growth rate and the growth rate in the presence of concentration gradient follow an additive rule. This can be explained by the fact that both the proNGF concentration and the its gradient can both individually contribute to neurite extension. The equation governing neurite outgrowth thus becomes:<br><br>
 
                                 <span style="position: relative; display: inline-block; text-align: center; width: 100%">       
 
                                 <span style="position: relative; display: inline-block; text-align: center; width: 100%">       
 
                                     <span class="frac">
 
                                     <span class="frac">
Line 733: Line 746:
 
                             </div>
 
                             </div>
 
                             <div class="block full">
 
                             <div class="block full">
                                 <p>We can introduce a time parameter Tlag because the time taken to transmit the NGF signal is finite. The experiments show that the time lag for the cells to respond to NGF is approximately 1 day. The experiments show:<br>
+
                                 <p>We can introduce a time parameter Tlag because the time taken to transmit the proNGF signal is finite. The experiments show that the time lag for the cells to respond to proNGF is approximately 1 day. The experiments show:<br>
 
                                 if t <FONT face="Raleway">&le;</FONT> T<SUB>lag</SUB> : &emsp; &emsp;  
 
                                 if t <FONT face="Raleway">&le;</FONT> T<SUB>lag</SUB> : &emsp; &emsp;  
 
                                     <span class="frac">
 
                                     <span class="frac">
Line 759: Line 772:
 
                             </div>
 
                             </div>
 
                             <div class="block full">
 
                             <div class="block full">
                                 <p>To solve the equation (4) we are using Euler’s method forward because the gradient concentration of NGF depends on the length of the neurite (since neurites consume NGF). <br><br>
+
                                 <p>To solve the equation (4) we are using Euler’s method forward because the gradient concentration of proNGF depends on the length of the neurite (since neurites consume proNGF). <br><br>
 
                                 The Equation (4): &emsp; &emsp; <br>
 
                                 The Equation (4): &emsp; &emsp; <br>
 
                                 <span style="position: relative; display: inline-block; width: 100%; text-align: center;">   
 
                                 <span style="position: relative; display: inline-block; width: 100%; text-align: center;">   
Line 824: Line 837:
 
                     <li style="list-style-type: decimal;">Defining the concentration gradient of nerve growth factor for guided neurite outgrowth, XCao M.SShoichet, March 2001<br><br></li>
 
                     <li style="list-style-type: decimal;">Defining the concentration gradient of nerve growth factor for guided neurite outgrowth, XCao M.SShoichet, March 2001<br><br></li>
 
                     <li style="list-style-type: decimal;">Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaffolds, Moore K, MacSween M, Shoichet M, feb 2006<br><br></li>
 
                     <li style="list-style-type: decimal;">Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaffolds, Moore K, MacSween M, Shoichet M, feb 2006<br><br></li>
                     <li style="list-style-type: decimal;">Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (NGF), Tse TH, Chan BP, Chan CM, Lam J, sep 2007<br><br></li>
+
                     <li style="list-style-type: decimal;">Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (proNGF), Tse TH, Chan BP, Chan CM, Lam J, sep 2007<br><br></li>
 
                     <li style="list-style-type: decimal;">Mathematical modelling of multispecies biofilms for wastewater treatment, Maria Rosaria Mattei, november 2005<br><br></li>
 
                     <li style="list-style-type: decimal;">Mathematical modelling of multispecies biofilms for wastewater treatment, Maria Rosaria Mattei, november 2005<br><br></li>
 
                 </ul>
 
                 </ul>

Revision as of 21:11, 13 October 2018

""

General introduction

The aim of our mathematical model is to simulate the growth of neurons towards our biofilm in response to the presence of pro Nerve Growth Factor (proNGF). proNGF is part of a family of proteins called neurotrophins. They are responsible for the development of new neurons, and for the growth and maintenance of mature ones. We created a deterministic model to help the wet lab establish the optimal concentration gradients of proNGF needed for the regrowth of the nerves. proNGF concentration and concentration gradient are key parameters affecting the growth rate and direction of neurites. Neurites growth has shown to be proNGF dose-dependent: if proNGF concentration is too low or too high, the growth rate is attenuated. In order to visualize the results of the model on a microfluidic chip, we used MATLAB, App Designer, Python, Gmsh, SpaceClaim and FreeFem. This is an important part of our project since it creates the link between the wet lab and dry lab.

We divided our model in three parts:

  1. Production of proNGF by the E. coli genetically modified
  2. Simulation of the diffusion of proNGF in a given environment
  3. Neurons growth in the presence of proNGF

Context of our model

Our project aims at creating a biofilm composed of genetically modified E. coli able to release a neurotrophic factor: proNGF. It helps to accelerate the connection between the neurons and the implant of the prosthesis; hence aiming at connecting the prosthesis and the amputee's neurons directly. This will enable the patient to have a more instinctive control of his prosthetic device. The nerves will be guided towards a conductive membrane surrounding our genetically modified biofilm. This membrane will then pass the neural signal of the regenerated nerves towards the electronic chip of the implant through wires. It will allow the patient to have a more instinctive and natural control than any other current prosthesis, and a reduced re-education time.

The aim of the wet lab is to test the biofilm on a microfluidic chip as a proof of concept. The chip is composed of two compartments: one contains the genetically modified E. coli that produce proNGF and the other one contains neurons. Microchannels link the two compartments in the middle of the chip, allowing the diffusion of proNGF and the growth of the neurites. Our model will hence be established on a microfluidic chip shape in order to share our results with the wet lab and indicate them the optimal concentration of proNGF needed according to our model.

We introduce different parameters in order to create our model :

g Length of the neurite outgrowth
dg/dt
Neurite outgrowth rate
u(x,t) Concentration of proNGF at the position x and time t
du/dt
proNGF concentration gradient at the position x and time t
Cdiff Diffusion coefficient of proNGF
K Gradient factor (growth rate of the neurite under the stimulation of the proNGF concentration gradient)
Gθ Baseline growth rate (neurite growth rate in absence of proNGF concentration gradient)
L Length of the conduit

proNGF Production by genetically modified E. coli

As we want to obtain the best fitted proNGF concentration, we first simulate the production and secretion of our recombinant proNGF by transformed E. coli, in order to help the wetlab to optimize the induction and obtain the desired concentration, and to check whether we can theoretically obtain the optimal concentration for neurite growth.

Model Description

In this model, we include transcription, translation, translocation through E. coli membrane, protein folding and mRNA and protein degradation in cytoplasm and medium. proNGF synthesis is placed under Plac promoter, so we also modelled the IPTG induction. Finally, proNGF is secreted to the medium through Type I secretion system in which the export signal peptide is not cleaved during translocation. Our Biobrick is design to synthetize and export TEV protease in order to cleave signal peptide and thus produce functional proNGF.

The molecular mechanism included in our model appears schematically in:

Our model includes the following variables:

Name Meaning
Iex IPTG outside the cell
Iin IPTG in the cytoplasm
Po Plac promoter occupied by repressor, prevent transcription
Pf Plac promoter with free lacO site
m mRNA for TEV and proNGF
m-r Ribosome-bound mRNA
proNGFc proNGF in cytoplasm
TEVc TEV protease in cytoplasm
(N-T)c proNGF-TEV complex in cytoplasm
proNGFcc Cleaved proNGF in cytoplasm, cannot be exported
proNGFt proNGF bound to transporter channel
TEVt TEV bound to transporter channel
t Transmembrane transporter
proNGFum Unfolded proNGF in medium with export peptide
proNGFm Folded proNGF in medium with export peptide
N-Tm Complex between proNGF with export peptide and functional TEV
TEVm TEV in medium with export peptide
proNGFf Functional proNGF in the medium

1. proNGF and TEV synthesis in the cytoplasm

The synthesis of proNGF and TEV is placed under the control of Plac promoter. The promoter can be in two different states: occupied (Po) by the repressor lacI, preventing RNA polymerase from binding and thus preventing transcription, or free (Pf) thanks to IPTG binding to the repressor. We assume that one IPTG molecule binds with one repressor molecule, freeing the promoter and restoring RNA polymerase binding capacity. The real mechanism of promoter Plac is more complex, as described in [1], but this simplification is sufficient for our model.

The transport of IPTG from outside the cell to cytoplasm is considered to be only due to free diffusion through the membrane by two first order reaction with the same kinetic constant.

IPTG is not considered to be degraded neither in the cytoplasm nor in the medium.

For the TEV and proNGF transcription, we use a first-order reaction where the rate of mRNA production (m) depends on the concentration of the free promoter (Pf).

For the TEV and proNGF translation, we first consider binding of ribosomes to ribosome binding site (the same association constant is used since the r.b.s. are the same), and then translation rate is proportional to the protein length. Since TEV and proNGF have approximately the length, we consider only one translation rate β.

Even though it still has an export peptide, TEV is assumed to be functional in the cytoplasm (although less functional than if it had no export peptide). Since proNGF has TEV cleaving site between the coding sequence and the export peptide, a fraction of proNGF is cleaved inside the cytoplasm and thus cannot be secreted. We use a simple model to simulate TEV kinetics: TEV recognizes the signal sequence ENLYFQ, bind to its substrate and then cleave the export peptide. This process can thus be modeled by the following equations:

K1, k-1 and k2 are taken lower than constants found in literature, in order to model the fact that TEV still has its signal peptide and is consequently less functional than usually.

2. proNGF and TEV secretion to the medium

The transport of proNGF and TEV with their export signal peptide from inside the cell to the medium is assumed to follow Michaelis-Menten enzymatic kinetics in which the transporter channel (composed of HlyB in the inner membrane, bound to HlyD and recruiting TolC in the outer membrane) plays the role of the enzyme and intracellular protein the role of the substrate.

Each protein (proNGF and TEV) via its export signal peptide HlyA can bind to the HlyB-HlyD complex pore, forming a protein-transporter complex (proNGFt or TEVt). Translocation correspond to the dissociation of this complex, resulting in restoring a free transporter and secreting proNGF or TEV in the medium (proNGFum and TEVm), which stand for the products.

3. Including growth rate

This model is valid for one bacterial cell, but for our model to fit with our proof of concept system, which is a microfluidic chip chamber containing 100 μL of bacterial culture, we need to integrate the number of bacteria contained in the chamber. Therefore, our model helps to determine which is the most accurate bacteria amount we need to put in our chip to produce the appropriate proNGF concentration.

4. proNGF folding and export peptide cleavage by TEV

Once in the medium, both proNGF and TEV are still bound to the export signal peptide HlyA. We assume there is a very small amount of functional TEV, that is sufficient to cleave TEV signal peptide, producing more functional TEV.

As for the transporter, we use a simple model in which TEV recognizes the signal sequence ENLYFQ, bind to its substrate (which can be either proNGF with its export peptide or TEV with its export peptide) and then cleave the export peptide. This process can thus be modeled by the following equations:

5. mRNA and protein degradation

Finally, in cytoplasm and in the medium, mRNA and protein are degraded and all degradations are assumed to follow first-order kinetic reactions.

MODEL PARAMETRISATION

From these equations, we obtained a system of differential equations mostly based on mass action kinetics (GET IT HERE). We numerically solveD the ordinary differential equations system using Euler method implemented in Python. The constants we used were mainly determined from literature AND are given in table …

NAME DESCRIPTION VALUE UNIT SOURCE
kt IPTG diffusion rate across the membrane 0.92 min-1
ki Association rate for derepression mechanism by IPTG 3 x 10-5 nM-1min-1
k-i Dissociation rate for derepression mechanism 4.8 x 103 min-1
α Transcription rate 2 mRNA.min-1nM-1
kr Association rate of ribosome with r.b.s 1 min-1mRNA-1
k-r Dissociation rate of ribosome with r.b.s 1 min-1
β Translation rate 4 nM.min-1mRNA-1
k1 Association rate of TEV with its substrate in the cytoplasm 7.8 x 10-7 min-1nM-1
k-1 Dissociation rate of TEV with its substrate in the cytoplasm 6 x 10-4 min-1
k2 Cleaving rate by TEV in cytoplasm 1.38 x 10-2 min-1
k3 Association rate of proNGF and TEV with transmembrane transporter 6 x 10-4 min-1nM-1
k-3 Dissociation rate of proNGF and TEV with transporter 2.34 min-1
k4 Translocation rate within the transporter 2.1 min-1
kf proNGF folding rate in the medium 0.28 min-1
k5 Association rate of TEV with its substrate in the medium 7.8 x 10-5 min-1nM-1
k-5 Dissociation rate of TEV with its substrate in the medium 0.06 min-1nM
k6 Cleaving rate by TEV in the medium 1.38 min-1nM-1
δm mRNA degradation rate 0.462 min-1
δpc Protein degradation rate in cytoplasm 0.2 min-1
δpm Protein degradation rate in extracelular medium 0.1 min-1

MODEL RESULTS

We determined the temporal evolution of secreted proNGF concentration in the medium, in order to get the u(0,t) term used in our following diffusion model.

After the initial dynamics, concentration of secreted proNGF quickly reaches a steady state , which is then only driven by the bacterial population dynamics. If we consider a bacterial culture in stationary phase, we can consequently consider that the initial proNGF concentration is constant. Our model predicts that the majority of recombinant protein remains cytoplasmic or is secreted but not functional (we consider as "non-functional proNGF" the recombinant proteins that are not folded or still have a C-terminal HlyA signal peptide), as it appears in Fig1.

The aim of this first model is to demonstrate that we can expect an appropriate secreted recombinant proNGF concentration to observe neurite growth. However, we had to make several assumptions to parametrize the model. We scanned different parameter values for the values we assumed (such as number of transporters or kinetic parameters for translocation) in order to check the range of proNGF amount we can reasonably expect. We also studied influence of IPTG induction and number of bacteria, since they are parameters our wetlab can control to best fit recombinant proNGF secretion with what we need.

Influence of number of transporters

We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of proNGF concentration we can expect.

The following graph shows the predicted proNGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):

We co-transformed our bacteria with a plasmid expressing HlyB and HlyD, two of the components of the secretion pore. However, we did not quantify the number of pores each cell contains, and we are only able to estimate it, based on assumptions made in [5]. Consequently, we scanned a range of different values for the quantity of transporters in order to see the range of proNGF concentration we can expect.

The following graph shows the predicted proNGF concentration in the microfluidic chip chamber for a number of pores varying: no pore (A.), 10 per cell (B.), 100 per cell (C.) and 500 per cell (D.):

Influence of translocation rate

As expected, the more transporters the cell has, the more recombinant proNGF is secreted, but the amount of functional secreted proNGF (in blue) remains limited due to TEV protease cleaving efficiency.

Taking in account the number of E. coli cells and the dilution factor between intracellular and extracellular space, we obtain for 500 transporters a concentration of functional proNGF of 1 nM, which correspond to 24 ng/mL. This is still 10 times lower than what we need to observe neurite growth. Enhancing signal peptide cleavage by a more efficient enzyme should help solve the problem, since we could expect 5 nM functional proNGF if the totality of the secreted proNGF was cleaved.

IPTG induction level

One of the parameters our wetlab team is able to adjust is IPTG induction in the microchannel chip in order to optimize the obtained proNGF concentration. Consequently, we studied the dependence of secreted proNGF with IPTG initial concentration.

As expected the final proNGF concentration (both in the cytoplasm and in extracellular medium) is an increasing function of IPTG induction. As our wetlab did not succeed in quantifying the secreted proNGF, it is hard to figure out whether or not the desired concentration was obtained, but if our assumptions are valid, it could be reached with reasonable IPTG concentrations. Production of proNGF with the tag has been detected by Mass spectrometry.

PERSPECTIVES

Our model is based on assumptions but it shows that within realistic parameters values, we can reasonably expect to obtain the optimal proNGF concentration needed for neurite growth in the microfluidic chamber and it consequently paves the way to a functional proof of concept.

Next modeling steps:

  • It would be worth isolating and quantifying secreted recombinant proNGF in order to confront model and experiments, and be able to determine some of the kinetics parameters values we used (such as translocation rate)
  • This program is designed to model the microchip proof-of-concept experiment but we will adapt it to our final biofilm device to predict its behavior

proNGF diffusion diffusion in a given environment


We are looking to understand the way the proNGF spreads inside the conduit once it is produced. This will help us to determine the proNGF concentration u(x,t) (ng.mL-1) as a function of the distance x (cm) from the production site of proNGF.

Fick’s diffusion law

To simulate proNGF diffusion in the microfluidic chip we consider a unidimensional conduit of axe x and a constant concentration of proNGF introduced at one end of the canals. In this part, diffusion is assumed to be the only mechanism producing the gradient decay in the micro canals. We can model the diffusion characteristics of proNGF with Fick’s second law of diffusion:
du / dt = Cdiff d2u / dx2    (1)

Cdiff is assumed to be constant inside the conduit and depends on the material used.
There are also two boundary conditions:
at x=0:    du / dx |(0,t)   (2)
at x=L:    du / dx |(L,t)   (3)

Indeed, in the same material, the rate transfer of the diffusing proNGF through the cross section of the micro canal is proportional to the concentration gradient normal to the cross section. It is assumed that the leakage of proNGF at both ends of the micro canal is negligible because there should be little proNGF at the ends the micro canals compared to the total amount of proNGF and second because of a low proNGF diffusion rate. The equation (1) can be solved with Euler’s method and we find the proNGF concentration gradient at the position x and time t. The MatLab code is the following:

We displayed our results showing a decrease of the concentration of proNGF (u(x,t)) depending on the distance of the conduit x.

We used the following parameters for the model:

Length of the conduit: L 0.1 cm
Diffusion coefficient of proNGF : Cdiff 7,8*10-7 cm2.s-1
Time length of the experiment: t_final 3 600 s

We obtain the following graphs:

Optimisation of the proNGF gradient

To optimize the accuracy of the proNGF gradient we interpolate the curve u(x)=f(x). Consequently, we obtain the f polynomial function easier to derive and a polynomial function of the gradient with a better accuracy than with the first method. The program is the following:

With the same parameters as with the previous model we obtain the following graphs:

Analysis of the model

To validate the model, we vary the three parameters (L, t_final, Cdiff) to verify if the program corresponds to a diffusion phenomenon described in Fick’s second law of diffusion.

Observations:

  1. When the length of the conduit increases but the duration of the experiment is fixed the proNGF doesn’t have the time to diffuse in the entire conduit.
  2. For instance, with a t_final= 3 600s the proNGF molecules can’t diffuse further than x=0.2cm.

The higher the diffusion coefficient, the faster the molecules will diffuse in the conduit. Indeed, we observe in the model that with a fixed t_final:

  1. proNGF concentration at x=0.1 cm is 675 000 ng.ml-1 for a diffusion coefficient Cdiff = 15*10-7 cm2.s-1
  2. For a diffusion coefficient two times lower, the proNGF concentration is 380 ng.ml1

The results confirm the prediction of the Fick’s law model.

When the time length of the experiment lasts from 1 hour to 2 hours, the concentration of proNGF is almost homogeneous in the entire conduit. At the end of the conduit, for x= 0.1 cm, the concentration of proNGF equals to 910 ng.ml-1 when t_final= 7 200s whereas the concentration is 3 900 ng.ml-1 when t_final=3 600s.

It is interesting to observe that when the duration of the experiment increases, the stationary regime is established: the proNGF concentration in the conduit becomes independent of the position and time. Indeed, the concentation gradient of proNGF in the conduit moves toward 0 for any position.

Neurons growth in the presence of proNGF


In this part our goal is to determine the length of the neurite outgrowth (g(t)) in response to the gradient concentration of proNGF.

Explanation of the model

Baseline growth rate:

In our mathematical model, neurites grow at a constant growth rate defined as the baseline growth rate G0 when the concentration is below the threshold (assumed to be 995 ng.mL-1). Neurites stop growing when the proNGF concentration is higher than the threshold concentration. The value for the baseline growth rate G0 has been fixed at 20 μm.h-1 for this model.

Concentration Gradient:

The extent of directional guidance is gradient steepness-dependent provided that the concentration gradient reaches the threshold value. The gradient factor k is a gradient steepness-dependent positive effect on the neurite growth rate.

In this model we assume that the baseline growth rate and the growth rate in the presence of concentration gradient follow an additive rule. This can be explained by the fact that both the proNGF concentration and the its gradient can both individually contribute to neurite extension. The equation governing neurite outgrowth thus becomes:

dg / dt = G0 + k u / x |(g(t),t)       (4)

We can introduce a time parameter Tlag because the time taken to transmit the proNGF signal is finite. The experiments show that the time lag for the cells to respond to proNGF is approximately 1 day. The experiments show:
if t Tlag :     dg / dt = 0
else, if: t Tlag :     dg / dt = G0 + k u / x |(g(t),t)

Solving the model

To solve the equation (4) we are using Euler’s method forward because the gradient concentration of proNGF depends on the length of the neurite (since neurites consume proNGF).

The Equation (4):    
dg / dt = G0 + k u / x |(g(t),t)

Can be written as:    

g' = G0 + k*f(g,t)

Which can be written as :    

gn+1 - gn / dt |(g(t),t) = Gθ + k u / x |(g(t),t)

We can therefore have an expression of gn+1:    

gn+1 = gn + dt*[G0 + k u / x |(g(t),t)]

With initial values of gθ, tθ and u / x |(g(t),t) we can find all the values of the g

References

  • Defining the concentration gradient of nerve growth factor for guided neurite outgrowth, XCao M.SShoichet, March 2001

  • Immobilized Concentration Gradients of Neurotrophic Factors Guide Neurite Outgrowth of Primary Neurons in Macroporous Scaffolds, Moore K, MacSween M, Shoichet M, feb 2006

  • Mathematical Modeling of Guided Neurite Extension in an Engineered Conduit with Multiple Concentration Gradients of Nerve Growth Factor (proNGF), Tse TH, Chan BP, Chan CM, Lam J, sep 2007

  • Mathematical modelling of multispecies biofilms for wastewater treatment, Maria Rosaria Mattei, november 2005