Difference between revisions of "Team:BNU-China/Attributions"

Line 4: Line 4:
  
 
<html>
 
<html>
 +
 
<div class="main-container">
 
<div class="main-container">
     <div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/f/f4/T--BNU-China--project.jpg);">
+
     <div class="container-fluid page-heading" style="background-image: url(https://static.igem.org/mediawiki/2016/9/96/T--BNU-China--team.jpg);">
         <h3> Modeling </h3>
+
         <h3> Attributions </h3>
 
     </div>
 
     </div>
 +
    <div>
 +
        <div class="page-story">
 +
            <article id="achievement" class="col-lg-10 col-lg-offset-1 col-md-12 col-md-offset-0 col-sm-offset-0 col-sm-12">
 +
                <header class="page-header">
 +
                    <h1>Attributions</h1>
 +
                </header>
  
      <div class="page-story">
+
                              <h2>Attributions</h2>
 +
                <div class="panel-group">
 +
                    <div class="panel panel-info attributions">
 +
                        <div class="panel-heading">
 +
                            <h4>Project Design and Wet Lab Experiments</h4>
 +
                        </div>
 +
                        <div class="panel-body">
 +
                            <p>Under the supervision of Prof. Zhu Xudong, Prof. Yang Dong, and Prof. Xiang Benqiong etc, nearly all team members have taken part in the project designing process, especially those of wet lab group. Jingyu Zhao, Xinyu Liu, Jingqiu Lan are responsible for designing the experimental patterns and guided different parts of the project.</p>
 +
                        </div>
 +
                    </div>
 +
                    <div class="panel panel-info attributions">
 +
                        <div class="panel-heading">
 +
                            <h4>Modeling</h4>
 +
                        </div>
 +
                        <div class="panel-body">
 +
                            <p>Zhiyao Chen is the leader of modeling group, who mainly enrolled in designing the modeling details and was responsible for the collaboration with FAFU-CHINA in modeling. Zebang Li, Yujing Gao and Zexue He also do a great many works in the modeling group, such as information searching, paper writing and equipment appilication.</p>
 +
                        </div>
 +
                    </div>
 +
                    <div class="panel panel-info attributions">
 +
                        <div class="panel-heading">
 +
                          <h4>Wiki Construction</h4>
 +
                        </div>
 +
                        <div class="panel-body">
 +
                            <p>Xin Lv, who has led the web design group to build the wiki, together with group members Zitan Chen and Chengfei Peng.</p>
 +
                        </div>
 +
                    </div>
 +
                    <div class="panel panel-info attributions">
 +
                        <div class="panel-heading">
 +
                          <h4>Graphic Design</h4>
 +
                        </div>
 +
                        <div class="panel-body">
 +
                            <p>Shiyu He and Caixuan Xiao really do a fantastic work in graphic and web design. They all make great efforts in designing our team logo, website, poster, souvenir, T-shirt and so on.</p>
 +
                        </div>
 +
                    </div>
 +
                    <div class="panel panel-info attributions">
 +
                        <div class="panel-heading">
 +
                            <h4>Human Practice</h4>
 +
                        </div>
 +
                        <div class="panel-body">
 +
                            <p>Jingyu Zhao, Fansen Ji, Ye Tian and Nan Rong have organized a series of activities for Policy and Practice, like Mini-iGEM competition, interview in Pecking Union Medical College Hospital and so on. Some group members as Xinyu Liu, Yuhong Zou and Liufeng Dai play a significant role in planning and organizing the activities. Nearly all of our group members took parts in different activities.</p>
 +
                        </div>
 +
                    </div>
 +
                </div>
  
        <article id="project" class="col-lg-10 col-lg-offset-1 col-md-12 col-md-offset-0 col-sm-offset-0 col-sm-12">
 
            <header class="page-header">
 
            </header>
 
  
            <p>In order to reach the goal of minimizing the average degradation rate of E.coli, i.e. the highest average expression level of our target gene, we chose to simulate the behaviors of individual E.coli by a segregated population competition model, furthermore used the method of cellular automaton, while incorporating several modulating model parts into steps of cell reproduction, to get the population of different E.coli at each time step.</p>
 
            <p>To specify, we first distinguish the E.coli by their plasmid numbers, under the assumption that individual behaviors are alike within the group with the same plasmid numbers. Then, by getting the ribosome bind rate through mechanism model and the growth promoting effect through 3-dimensional random walk model, we adjusted the E.coli’s individual growth rate. Meanwhile,  queue theory is used for exploring the relationship between intracellular plasmid number and target gene expression level. What’s more, a fall-off mechanism is incorporated by energy estimation, when considering the subsequent translation of glucose dehydrogenase, which serves as a growth promoter of E.coli.</p>
 
            <p id = "Main">After repeating the process of reproduction in a reasonable period of time, the population of E.coli with various plasmids can be simulated, therefore provide us with the population’s information as time goes on.</p>
 
            <h2>Main model<h2>
 
            <p>The whole population of E.coli are separated into 100 different groups, with $N(i)$ E.coli attributed to the $i^{th}$ group, in which they all possess $i$ plasmids at current time. Each group of E.coli was regarded as a distinct population, under the assumption that individuals are alike within, i.e. their gene expression level, growth rate are basically the same under similar circumstances. One minute is set as a time step. For each group of E.coli, a fraction of the population will go through the process of plasmid replication and dividend at each time step, through which the fraction is determined by the level of E.coli’s growth rate $\mu(i,S)$, who is closely related to the E.coli’s type and culture concentration. </p>
 
            <p>After each time step $dt$, the population change of the $i^{th}$ group $\frac{dN}{dt}$ is constituted with two parts: E.coli with $i$ plasmids produced by parent cell in other groups, and the E.coli with $j(\neq i)$ plasmids produced by parent cell in the $i^{th}$ group. </p>
 
            <p>Given a random distribution mechanism of plasmids into son cells, the distribution rate $\delta_{i,j}$, which stands for the probability of parent E.coli in $i^{th}$ group producing son E.coli in $j^{th}$ group. We then multiply this probability to the fraction of population who replicates, to get the change in population respectively as $$\frac{dN(i)}{dt} = \sum_{j \neq i}^{N_{p,max}}\delta_{i,j} \mu(j,S) N(j) - (1-2(\frac{1}{2})^i) \mu(i,S) N(i)$$</p>
 
            <p>Meanwhile, the consumed substrate can also be describe in an ODE as $$\frac{dS}{dt} = -\frac{1}{Ys} \sum_{i=0}^{N_{p,max}} \frac{dN(i)}{dt}$$</p>
 
            <p>Programs simulating this process is done at each time step, and each group’s population is well-known. We selected ten representative groups (E.coli with 1,20,40,60,80,100,120,140,160,180,200 plasmids) and have their population drawn in the curves below.</p>
 
            <figure class="text-center" id = "Probability">
 
                <img src="https://static.igem.org/mediawiki/2018/1/1b/T--BNU-China--image_modeling_1.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure>
 
            <h2>Probability of distribution<h2>
 
            <p>The loss of plasmids during reproduction, is mainly due to the uneven distribution of plasmids into two son E.coli after plasmid replication. Therefore, it is important to give the probability of each possible situation. To be more specified, the probability of a i-plasmid parent producing a j-plasmid son has to be calculated.  </p>
 
            <p>Plasmids’ self-replication has to take place ahead, for a empirical formula of replication number is given $$CopyNum(i) = \frac{V_m (i-1)}{K_m+i-1} - (i-1)\mu(i,S)$$ to describe the average plasmid copy number of E.coli with $i$ plasmids. </p>
 
            <p>Then, treating the plasmid distribution process as totally random distribution, the allocation of n plasmids into two son E.coli can be viewed as Bernoulli experiment for n times, from which the probability of i-plasmid parent producing a j-plasmid son is $$\delta_{i,j}=2C_i^j (\frac{1}{2})^j(\frac{1}{2})^{i-j}=\frac{C_i^j}{2^{i-1}}$$. If we mark each row by their intracellular plasmid number, and each column by the plasmid number of their offspring, a distribution possibility table can be listed. However, since the table is too large and lack of readability, we display it more intuitively by using a 3-dimensional plot, in which the x-axis is the plasmid number of parent E.coli, while the y-axis is the number of plasmids possessed by one of its son, the height of each point stands for the possibility of above reproduction.</p>
 
            <figure class="text-center" id = "E">
 
                <img src="https://static.igem.org/mediawiki/2018/6/61/T--BNU-China--image_modeling_2_change.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure>         
 
            <h2>E.coli growth rate<h2>
 
            <p>The growth rate of each E.coli can be controlled by an upper limitation of growth rate $\mu_{max}$, influenced by the number of plasmids $i$ contained, length of target gene incorporated, the culture concentration $S$, as well as the growth promoting effect $\gamma$ brought by the growth-promoter (glucose dehydrogenase). Referring to several well-established models, we form the individual growth rate at a given culture condition as $\mu(i,S) = \mu_{max} \frac{K}{K + i^n} \frac{S}{S+Ks}\gamma(i,S)$.</p>
 
            <p>Equipped with theoretical formula, the change of individual growth rate with respect to several factors can be simulated:</p>
 
            <p>I.Change of E.coli’s Growth Rate v.s. Change of Plasmid Number</p>
 
            <figure class="text-center">
 
                <img src="https://static.igem.org/mediawiki/2018/8/85/T--BNU-China--image_modeling_3.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure> 
 
            <p>II.Change of E.coli’s Growth Rate v.s. Change of Culture Concentration</p>
 
            <figure class="text-center" id = "Growth">
 
                <img src="https://static.igem.org/mediawiki/2018/2/28/T--BNU-China--image_modeling_4.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure> 
 
            <h2>Growth promoting effect<h2>
 
            <p>Knowing the promoter’s mechanism of increasing individual growth rate, our model wish to quantitatively figure out the extent of increase in E.coli’s growth rate with the influence of  a certain amount of glucose dehydrogenase. Because of the great complexity of knowing and simulating the whole promoting process,  our model only focuses on the steps influenced by the promoter, who serves as an enzyme in cellular respiration. Both the enzyme and the substrate moves randomly in the E.coli, which induced us to a 3-dimensional random walk model. The initial substrate concentration is set fixed throughout experiments, while the concentration of enzyme (i.e. the growth-promoter glucose dehydrogenase) varies among different situations, simulation with programming is done, and the average combination ratio can be calculated. </p>
 
            <p>This value is then used as the adjustment multiplier of E.coli’s individual growth rate, since their combination stands for the happening of enzymatic reaction. By treating the substrate-enzyme combination rate as a quantified value of E.coli’s growth promoting effect, we further incorporate this term as the change of individual growth rate (no units), which means, the greater this value is, E. coli shall experience a faster growth, and the promoting effect changes, under various content of intercellular glucose dehydrogenase, as follows.</p>
 
            <figure class="text-center" id = "Gene">
 
                <img src="https://static.igem.org/mediawiki/2018/3/36/T--BNU-China--image_modeling_5.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure> 
 
            <h2>Gene expression level<h2>
 
            <p>Following the steps mentioned above, the composition of E.coli population at each time is well known. Our goal now is to find out the relationship between individual plasmid number and the recombinant gene expression level. </p>
 
            <p>We absorbed the queue theory in operational research, by treating the nutrients as customers, and the plasmid in each E.coli as the service station. Given the E.coli’s average nutrient intaking capacity, as well as the plasmid processing rate, the amount of nutrients taken by E.coli and processed by each plasmid are known. Then, with different intracellular plasmid numbers between different groups, the processing ability between individual E.coli can vary, indicating a bigger velocity of reaction with a greater number of plasmids contained. </p>
 
            <p>However, more plasmids can leads to decreasing amount of allocated nutrients on average. Since the E.coli’s nutrient intake ability is fixed,  more plasmid within means less nutrients sent to each of them, this will on the other hand, leads to a decrease in target gene expression level of each plasmid. </p>
 
            <p>Programming goes along with theoretical deductions, by setting the time step as one second, E.coli’s nutrient intake ability is set as at most 10 units, and the plasmid’s average processing ability is 2 units at a time, under the assumption that the absorbed amount is totally proportional to the gene expression level. Individual E.coli with 0 to 200 plasmids are considered, and after the simulation for 3600 seconds, we count the total amount of nutrients utilized by each kind of E.coli, which reveals the total amount of target protein produced. Then the gene (taken by each plasmid) expression level within each group of E.coli can be calculate, and its change are drawn into the curve below.</p>
 
            <figure class="text-center" id = "Ribosome">
 
                <img src="https://static.igem.org/mediawiki/2018/0/07/T--BNU-China--image_modeling_6.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure> 
 
            <h2>Ribosome fall-off rate<h2>
 
            <p>But one thing left to be mentioned is that, the express possibility of target gene can differ from the gene in charge of promoting cell growth (i.e. glucose dehydrogenase). Since the target gene can be successfully expressed as long as the promoter combines with the ribosome, while the subsequent TGATG sequence allows for a ratio of  fall-off , therefore results in a decrease in the expression level of glucose dehydrogenase. </p>
 
            <p>The possibility of fall-off is relevant to the length of target gene, which situated before the TGATG sequence, while the gene of growth-promoting part is relatively fixed, which follows the TGATG sequence, and our task is trying to figure out, the change of fall-off rate with respect to the length of target gene.</p>
 
            <p>The intensity of ribosome-sequence combination can be measured as their binding energy through translation, which we assume to be proportional as the length of target gene. Referring to [], the fraction of time that a ribosome elongates the translation process and remains in combination with subsequent sequence. $F = \frac{1}{1+C \exp(G_bind)}$, $C$ a parameter representing the ribosome-assisted unfolding coefficient, while $G_bind$ is the binding energy between given target gene and the ribosome. The curve describing the remaining rate of ribosome, with respect to the length of target gene, is shown.</p>
 
            <figure class="text-center">
 
                <img src="https://static.igem.org/mediawiki/2018/1/11/T--BNU-China--image_modeling_7.jpg" width="65%">
 
                <figcaption>
 
                   
 
                </figcaption>
 
            </figure> 
 
  
 +
           
 +
                <h2>Attributions details</h2>
 +
                <dl class="dl-horizontal">
 +
                    <dt>Jingyu Zhao</dt>
 +
                    <dd>Team leader
 +
                        <br />
 +
                        
Wet lab group leader (biobricks construction, microtubulin protein expression)
 +
                        <br />
 +
                        Daily activities arrangement and personnel management
 +
                        <br />
 +
                        Human practice
 +
                    </dd>
  
            <div class="reference">
+
                    <dt>Xinyu Liu</dt>
               
+
                    <dd>Wet lab group leader (design of project, parts improvement)
            </div>
+
                        <br />
   
+
                        Management of the team
      </article>
+
                        <br />
   
+
                        Construction of the biobricks
</div>
+
                    </dd>
 +
 
 +
                    <dt>Jingqiu Lan</dt>
 +
                    <dd>
 +
                        Wet lab group leader
 +
                        <br />
 +
                        Design of project, constructing parts and purifying tubulin protein
 +
                    </dd>
 +
 
 +
                    <dt>Ye Tian</dt>
 +
                    <dd>
 +
                        Parts improvement, constructing parts
 +
                    </dd>
 +
 
 +
                    <dt>Nan Rong</dt>
 +
                    <dd>
 +
                        Wet lab part (constructing parts)
 +
                        <br />
 +
                        Human Practice
 +
                    </dd>
 +
 
 +
                    <dt>Liufeng Dai</dt>
 +
                    <dd>
 +
                        Wet lab part (constructing standard biobricks, fusion PCR)
 +
                    </dd>
 +
 
 +
                    <dt>Yuhong Zou</dt>
 +
                    <dd>
 +
                        Wet lab part (constructing standard biobricks, fusion PCR)
 +
                    </dd>
 +
 
 +
                    <dt>Fansen Ji</dt>
 +
                    <dd>
 +
                        Organizing activities of Human Practice
 +
                    </dd>
 +
 
 +
                    <dt>Qian Xue</dt>
 +
                    <dd>
 +
                        Basic lab work and essay writing
 +
                    </dd>
 +
 
 +
                    <dt>Shiyu He</dt>
 +
                    <dd>
 +
                        Contributed to wiki and art
 +
                        <br />
 +
                        Graphic Design (website design, logo of the team and T-shirt)
 +
                    </dd>
 +
 
 +
                    <dt>Caixuan Xiao</dt>
 +
                    <dd>
 +
                        Art designing
 +
                        <br />
 +
                        Graphic Design (website design, logo of the team and T-shirt)
 +
                    </dd>
 +
 
 +
                    <dt>Zhiyao Chen</dt>
 +
                    <dd>
 +
                        Leader of Modeling part
 +
                        <br />
 +
                        Helped FAFU with works in modeling part
 +
                    </dd>
 +
 
 +
                    <dt>Zebang Li</dt>
 +
                    <dd>
 +
                        Mathematical modeling, building some models to study some parameters of tubulin
 +
                    </dd>
 +
 
 +
                    <dt>Yujing Gao</dt>
 +
                    <dd>
 +
                        Member of the modeling group
 +
                        <br />
 +
                        Building statistical modeling with the biological knowledge
 +
                    </dd>
 +
 
 +
                    <dt>Xin Lv</dt>
 +
                    <dd>
 +
                        Leader of wiki group
 +
                        <br />
 +
                        Building web pages, some parts of modelling work
 +
                    </dd>
 +
 
 +
                    <dt>Zitan Chen</dt>
 +
                    <dd>
 +
                        Website construction
 +
                    </dd>
 +
 
 +
                    <dt>Chengfei Peng</dt>
 +
                    <dd>Constructing the website</dd>
 +
 
 +
                    <dt>Zexue He</dt>
 +
                    <dd>Website designing</dd>
 +
 
 +
                    <dt>Yutong Wu</dt>
 +
                    <dd>Wet lab (extracting and purifying of the tubulin)</dd>
 +
 
 +
                    <dt>Junchen Deng</dt>
 +
                    <dd>Paticipating in topic selection and working on wet lab</dd>
 +
 
 +
                    <dt>Zekai Wu</dt>
 +
                    <dd>Participating in team building and take part in human practice</dd>
 +
                </dl>
 +
            </article>
 +
        </div>
 +
 
 +
    </div>
  
 
</html>
 
</html>
 
{{BNU-CHINA/partials/footer}}
 
{{BNU-CHINA/partials/footer}}

Revision as of 00:10, 14 October 2018

Team:BNU-CHINA - 2016.igem.org style = "font-family: Helvetica;"

Attributions

Attributions

Project Design and Wet Lab Experiments

Under the supervision of Prof. Zhu Xudong, Prof. Yang Dong, and Prof. Xiang Benqiong etc, nearly all team members have taken part in the project designing process, especially those of wet lab group. Jingyu Zhao, Xinyu Liu, Jingqiu Lan are responsible for designing the experimental patterns and guided different parts of the project.

Modeling

Zhiyao Chen is the leader of modeling group, who mainly enrolled in designing the modeling details and was responsible for the collaboration with FAFU-CHINA in modeling. Zebang Li, Yujing Gao and Zexue He also do a great many works in the modeling group, such as information searching, paper writing and equipment appilication.

Wiki Construction

Xin Lv, who has led the web design group to build the wiki, together with group members Zitan Chen and Chengfei Peng.

Graphic Design

Shiyu He and Caixuan Xiao really do a fantastic work in graphic and web design. They all make great efforts in designing our team logo, website, poster, souvenir, T-shirt and so on.

Human Practice

Jingyu Zhao, Fansen Ji, Ye Tian and Nan Rong have organized a series of activities for Policy and Practice, like Mini-iGEM competition, interview in Pecking Union Medical College Hospital and so on. Some group members as Xinyu Liu, Yuhong Zou and Liufeng Dai play a significant role in planning and organizing the activities. Nearly all of our group members took parts in different activities.

Attributions details

Jingyu Zhao
Team leader

Wet lab group leader (biobricks construction, microtubulin protein expression)
Daily activities arrangement and personnel management
Human practice
Xinyu Liu
Wet lab group leader (design of project, parts improvement)
Management of the team
Construction of the biobricks
Jingqiu Lan
Wet lab group leader
Design of project, constructing parts and purifying tubulin protein
Ye Tian
Parts improvement, constructing parts
Nan Rong
Wet lab part (constructing parts)
Human Practice
Liufeng Dai
Wet lab part (constructing standard biobricks, fusion PCR)
Yuhong Zou
Wet lab part (constructing standard biobricks, fusion PCR)
Fansen Ji
Organizing activities of Human Practice
Qian Xue
Basic lab work and essay writing
Shiyu He
Contributed to wiki and art
Graphic Design (website design, logo of the team and T-shirt)
Caixuan Xiao
Art designing
Graphic Design (website design, logo of the team and T-shirt)
Zhiyao Chen
Leader of Modeling part
Helped FAFU with works in modeling part
Zebang Li
Mathematical modeling, building some models to study some parameters of tubulin
Yujing Gao
Member of the modeling group
Building statistical modeling with the biological knowledge
Xin Lv
Leader of wiki group
Building web pages, some parts of modelling work
Zitan Chen
Website construction
Chengfei Peng
Constructing the website
Zexue He
Website designing
Yutong Wu
Wet lab (extracting and purifying of the tubulin)
Junchen Deng
Paticipating in topic selection and working on wet lab
Zekai Wu
Participating in team building and take part in human practice