Difference between revisions of "Team:Pasteur Paris/Technicals"

Line 9: Line 9:
 
             background-color: #292929;
 
             background-color: #292929;
 
         }
 
         }
    #bannerchanged{
+
        #banner {
          width: 100%;
+
            background-image: ;
          overflow: hidden;
+
        }
          margin: 0 auto;
+
        @media screen and (max-width: 760px) {
    }
+
            #banner {
    @media screen and (max-width: 760px) {
+
                background-image: ;
    /*#wrapper {
+
            }
          width: 100%;
+
         }
          overflow: hidden;
+
         ul li{
      }
+
    #container {
+
         width: 100%;
+
          margin: 0 auto;
+
      }*/
+
    .banner-img {
+
         width: 100%;
+
      }
+
    }
+
    ul li{
+
 
             list-style: disc;
 
             list-style: disc;
    }
+
        }
</style>
+
    </style>
<body>
+
  
 
+
     <div id="banner">
     <div id="bannerchanged">
+
         <h1>DESIGN AND SCIENCE</h1>
         <img class="banner-img" src="https://static.igem.org/mediawiki/2018/8/8c/T--Pasteur_Paris--Banner_Scenario.jpg">
+
 
     </div>
 
     </div>
  
Line 42: Line 30:
 
         <div id="index" class="block">
 
         <div id="index" class="block">
 
             <div id="indexContent">
 
             <div id="indexContent">
                 <p><a href="#Choice" class="link">NeuronArch’s choice</a></p>
+
                 <p><a href="#Research" class="link">Research Phase</a></p>
                 <p><a href="#Implant" class="link">Surgical implantation</a></p>
+
                 <p><a href="#Ideation" class="link">Ideation Phase</a></p>
                 <p><a href="#Life" class="link">Daily life</a></p>
+
                 <p><a href="#Conception" class="link">Device and App Conception</a></p>
                 <p><a href="#Doctor" class="link">Doctor</a></p>
+
                 <p><a href="#Prototype" class="link">Device and App Prototype</a></p>
                 <p><a href="#Maintenance" class="link">Maintenance</a></p>
+
                 <p><a href="#Communication" class="link">Communication</a></p>
 
             </div>
 
             </div>
 
             <div id="indexRight">
 
             <div id="indexRight">
Line 54: Line 42:
 
         <div id="MainContent">
 
         <div id="MainContent">
 
             <div class="block full">
 
             <div class="block full">
                 <p>Sometimes, severe injuries lead to amputation. Civilians as well as soldiers may be concerned, due to accidents, vascular issues, or even artillery wounds for the last category. Amputations are more frequently located on lower limbs<sup>[1]</sup> (<b>Figure 1</b>). However, bionic prostheses are nowadays developed mainly for the arms, not for the legs. For the prosthetic industry, designing bionic arms is more challenging because of its capacity to push technological boundaries in order to reproduce movements, sense of feeling, etc. Based on this observation, we focused on a trans-humeral amputation scenario. Nevertheless, NeuronArch’s solution is transposable in different anatomical amputation locations.</p>
+
                 <p>There are many kind of design approaches : « space designers » create new places to live in, « sound designers » create new experiences to hear, « food designers » create new taste to eat, « graphic designers » create new signs and symbols to see, and « digital designers » create new interfaces to navigate into the digital world.</p>
                <img src="https://static.igem.org/mediawiki/2018/e/e2/T--Pasteur_Paris--Scenario_Figure_1.svg">
+
                 <p>iGEM Pasteur team integrates industrial designers. Industrial design is a creative discipline that aims to create innovative solutions in order to solve contemporary issues in various fields : health, well-being, energy, mobility, habitat, food, etc. When designing new products or services, designers use a user centric approach that integrates several notions such as usages, ergonomics, industrial processes, technologies, social, cultural, environmental and economical aspects. Taking in account all these parameters allows designers to conceive solutions that address the targeted issues in a relevant way and that benefit to the user. </p>
                <div class="legend"><b>Figure 1: </b>Amputation locations</div>
+
                 <p>Nowadays, industrial design is evolving. To address issues in a more and more complexe and accurate way, industrial designers are getting closer to science by working with scientists and by settling in the labs. Our team is a good example of these new ways to co-create tomorrow’s innovations. </p>
            </div>
+
                 <p>Despite promising opportunities offered by these new cooperations, designers and scientists does not have the same cultures, languages, tools, etc. that avoid these collaborations to be fruitful. To overcome these issues, we shared and thought design tools and methodologies to our team mates in order to build a common ground for understanding and co-creation. Once done, we followed the subsequent process :</p>
            <div class="block title"><h3 style="text-align: left;">NeuronArch’s choice</h3></div>
+
            <div class="block full">
+
                <p>After a serious accident, the patient is transferred to a hospital. The doctor makes a diagnosis: the injury is too severe and amputation is inevitable. If the situation allows, medical staff presents different relevant options to the patient. The first option is a classic amputation procedure. At best, it would allow the patient to have a myo-electrical prosthesis. The second option is the NeuronArch solution. The NeuronArch device would allow the patient to wear bionic prothesis, while the NeuronArch app would monitor his health and prosthesis status. In addition, this solution could be partially supported by Social Security in the next few years. After weighing both options, the patient obviously goes for the NeuronArch option!</p>
+
            </div>
+
            <div class="block title"><h3 style="text-align: left;">Surgical implantation</h3></div>
+
            <div class="block full">
+
                 <p>The first step for a new NeuronArch holder is to order a NeuronArch kit, including:<br>
+
- the NeuronArch device, making the bridge between the stump and a bionic prosthesis;<br>
+
- an implantation stem featuring the engineered biofilm;<br>
+
- a charging station, to recharge the device and synchronize data with a distant server;<br>
+
- a personal access to the app / website, to monitor information, such as device’s battery level, health status, etc.
+
</p>
+
                <p>When the kit delivered, an orthopedic surgeon will osseointegrate the stem (<b>Figure 2</b>). This stem is sent in a sealed package. During surgery, the surgeon drills the bone in its center along its longitudinal axis, while a nurse lifts the NeuronArch stem out of the package. Thanks to a syringe, the nurse drains the culture liquid of the biofilm, contained in a protective cap. Once empty, this cap stays in place in order to allow the surgeon to manipulate the stem with surgical clips without damaging the biofilm and the membrane. The specialist inserts the stem into the bone (Figure 3). The orthopedist places some screws to hold the device in place (to be removed subsequently). The surgeon can now take the protection cap out thanks to a simple quarter turn system, and then complete the surgery by stitching the stump.</p>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/0/0c/T--Pasteur_Paris--Scenario_Figure_2bis.jpg">
+
                <div class="legend"><b>Figure 2: </b>Stem with its protection cap</div>
+
            </div>
+
            <div class="block full">
+
                <img src="https://static.igem.org/mediawiki/2018/6/62/T--Pasteur_Paris--Scenario_Figure3bis.svg">
+
                <div class="legend"><b>Figure 3: </b>Diagrams of osseointegration steps</div>
+
            </div>
+
            <div class="block title"><h3 style="text-align: left;">Daily life</h3></div>
+
            <div class="block full">
+
                 <p>In the morning, after a night without, the holder plugs the NeuronArch device (<b>Figure 4</b>) and his bionic prosthesis to the stem. Installation is simple, with an ergonomic quarter turn system. His bionic arm moves in an intuitive way thanks to the connection between nerves and the prosthesis, made possible by NeuronArch. With the app he installed on his smartphone (<b>Figure 5</b>), he is now able to check the battery status of his device, to consult his health data or to take an appointment with his primary doctor or his prosthetist (<b>Figure 6</b>). </p>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/a/a4/T--Pasteur_Paris--Scenario_Figure_4bis.jpg">
+
                <div class="legend"><b>Figure 4: </b>NeuronArch device implementation</div>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/e/ef/T--Pasteur_Paris--Scenario_Figure_5.jpg">
+
                <div class="legend"><b>Figure 5: </b>NeuronArch app notification </div>
+
            </div>
+
            <div class="block half">
+
                <img src="">
+
                <div class="legend"><b>Figure 6: </b>NeuronArch app scenario</div>
+
            </div>
+
            <div class="block full">
+
                <p>At night, battery is low and collected data needs to be transmitted to the server, in order update his health data and to improve machine learning. Thus, the amputee removes his prosthesis and put the NeuronArch device on the charging station (<b>Figure 7</b>). After several hours, the device is charged, data is synchronized (<b>Figure 8</b>), and NeuronArch is ready to start a new day.</p>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/d/da/T--Pasteur_Paris--Scenario_Figure_7.jpg">
+
                <div class="legend"><b>Figure 7: </b>NeuronArch device laying on charging station</div>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/c/cd/T--Pasteur_Paris--Scenario_Figure_8.jpg">
+
                <div class="legend"><b>Figure 8: </b>Recharging and synchronization</div>
+
            </div>
+
            <div class="block title"><h3 style="text-align: left;">Doctor</h3></div>
+
            <div class="block full">
+
                 <p>For his semestral check up, the NeuronArch holder goes to the doctor. In order to share data collected the last six months and his health status with the specialist, the patient shows his personal QR code available on the app (<b>Figure 9</b>). This code acts like a key that maintains his personal data secure. When scanning it, the doctor access to the patient’s dashboard and is now able to provide adapted advice and treatments regarding the situation. </p>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/9/92/T--Pasteur_Paris--Scenario_Figure_9.jpg">
+
                <div class="legend"><b>Figure 9: </b>During a medical appointment</div>
+
            </div>
+
            <div class="block title"><h3 style="text-align: left;">Maintenance</h3></div>
+
            <div class="block full">
+
                <p>Whether the NeuronArch device encounter a hardware issue, maintenance is made possible (<b>Figure 10</b>). The plastic case, containing the electronic parts, can be unsealed thanks to height screws. To perform this maintenance process, a prosthetist specifically trained can open and check the whole device. If something wrong, the prosthetist will repair or replace the defective parts. The embedded SD card is encrypted, to keep personal data far from prying eyes. NeuronArch have been designed to last a life time.</p>
+
            </div>
+
            <div class="block two-third">
+
                <img src="https://static.igem.org/mediawiki/2018/2/2c/T--Pasteur_Paris--Scenario_Figure_10tris.jpg">
+
                <div class="legend"><b>Figure 10: </b>Maintenance operation</div>
+
            </div>
+
            <div class="block separator-mark"></div>
+
            <div class="block title"><h1>REFERENCES</h1></div>
+
            <div class="block full">
+
                <ul style="text-align: left;">
+
                    <li style="list-style-type: decimal;">JM. André and J. Paysant, Les amputés en chiffres : épidémiologie, Cofemer, 2006</li>
+
                </ul>
+
 
             </div>
 
             </div>
 +
 +
            <!--Begin : First-->
 +
                <div class="block full bothContent">
 +
                    <div class="block dropDown" id="Research">
 +
                        <h4>Research Phase</h4>
 +
                    </div>
 +
                    <div class="block hiddenContent">
 +
                        <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 +
                        <div class="block full">
 +
                            <p>The first step of our innovation process consisted in an immersion phase. For a better understanding of our subject, we had to:<br>
 +
                                    -come up with a state of the art, recording and analyzing existing or inspiring initiatives, actors, and institutions;<br>
 +
                                    -meet diverse experts, from associations (ADEPA, <b>Figure 1</b>) to industries (I.CERAM, <b>Figure 2</b>), going through national institutes (CERAH, <b>Figure 3</b>), or hospitals (Georges Pompidou hospital, <b>Figure 4</b>);<br>
 +
                                    -identify specific literature and technical documents regarding existing prosthesis;<br>
 +
                            </p>
 +
                            <p>This step led us to understand amputees daily lives (behaviors, psychology, life environments, healthcare system, economic resources, etc.) and to specify the main issues (such as bacterial infections) and challenges to address in order to propose them relevant and effective innovations. These contents (data, testimonies, etc.) have been collected thanks to humans and social tools (semi-directive interview grids), design tools (mood boards), and documentation tools (photography, video, sound recording).</p>
 +
                        </div>
 +
                        <div class=" block half">
 +
                            <img src="https://static.igem.org/mediawiki/2018/1/13/T--Pasteur_Paris--RESEARCH_PHASE_Adepa.jpg">
 +
                            <div class="languages"><b>Figure 1: </b>Meeting with Jean-Pascal Hons, member of ADEPA</div>
 +
                        </div>
 +
                        <div class=" block half">
 +
                            <img src="">
 +
                            <div class="languages"><b>Figure 2: </b>Visit of I.CERAM's factory</div>
 +
                        </div>
 +
                        <div class=" block half">
 +
                            <img src="https://static.igem.org/mediawiki/2018/e/ef/T--Pasteur_Paris--CERAH.jpg">
 +
                            <div class="languages"><b>Figure 3: </b>Meeting with CERAH's orthopaedists</div>
 +
                        </div>
 +
                        <div class=" block half">
 +
                            <img src="">
 +
                            <div class="languages"><b>Figure 4: </b>Interview of Dr. Benjamin Bouyer</div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            <!--End : First-->
 +
            <!--Begin : Second-->
 +
                <div class="block full bothContent">
 +
                    <div class="block dropDown" id="Ideation">
 +
                        <h4>Ideation Phase</h4>
 +
                    </div>
 +
                    <div class="block hiddenContent">
 +
                        <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 +
                        <div class="block full">
 +
                            <p>After identifying knowledge, references, issues and constraints, we started a problem solving process by sketching first ideas, thanks to design tools, such as:<br>
 +
                                    -brainstorming and post-it sessions (<b>Figure 1</b>), to write down the first ideas;<br>
 +
                                    -cartographic and mind-mapping tools, to structure ideas;<br>
 +
                                    -sketching, user journey and roadmaps, to give form to the first concepts.
 +
                            </p>
 +
                            <p>Thanks to the previous step and to our network of experts, we filtered generated ideas in order to keep only the more adapted and relevant solutions regarding amputee’s behaviors, habits, psychology, life environments, economic resources, etc. </p>
 +
                        </div>
 +
                        <div class="block two-third centric">
 +
                            <img src="">
 +
                            <div class="legend"><b>Figure 1: </b>Post-it session</div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            <!--End : Second-->
 +
            <!--Begin : Third-->
 +
                <div class="block full bothContent">
 +
                    <div class="block dropDown" id="Conception">
 +
                        <h4>Conceiving a device and an app</h4>
 +
                    </div>
 +
                    <div class="block hiddenContent">
 +
                        <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 +
                        <div class="block full">
 +
                            <p>To make the step from the first ideas to tangible solutions, we designed a complete system (hardware and software solutions) including:<br>
 +
                            - an implantation stem featuring our engineered biofilm;<br>
 +
                            - a device making the bridge between the stump and a bionic prosthesis, to collect and process the signal from nerves;<br>
 +
                            - a charging station, to recharge the device and synchronize data with a distant server;<br>
 +
                            - an app / website, to monitor informations, such as device’s battery level, health status, etc.
 +
                            </p>
 +
                            <p>In order to design these solutions in a relevant, feasible and comfortable way, we payed strong attention to the device dimensions, ergonomics, assemblies, materials, colors, look and feel, electronic parts, production process and cost. The following devices have been conceived and developed thanks to design and engineering knowledge, skills and tools (McNeel Rhino 3D (<b>Figure 1</b>) as 3D modeling tool, Luxion Keyshot as 3D rendering tool), as well as scientific and industrial advice from experts. Colors, materials and finishes have been chosen regarding our devices constraints and thanks to material databases and color charts. </p>
 +
                        </div>
 +
                        <div class="block two-third center">
 +
                            <img src="https://static.igem.org/mediawiki/2018/c/c7/T--Pasteur_Paris--CONCEIVING.jpg">
 +
                            <div class="legend"><b>Figure 1: </b>3D Modelisation of our device and charger</div>
 +
                        </div>
 +
                        <div class="block title"><h3 style="text-align: left;">Conceiving the functional stem</h3></div>
 +
                        <div class="block full">
 +
                            <p>We designed a fully functional stem (<b>Figure 2 and 3</b>) composed of:<br>
 +
                            - a biocompatible tube made of titanium, to mechanically assemble the device to the user’s stump (1.). This material have been chosen instead of stainless steel 316L thanks to the mechanical modeling of the 3D representation of a humerus bone with a prosthesis <a href="">(Download the mechanical modeling here)</a>;<br>
 +
                            - a porous ceramic part (2.), surrounding the metallic tube inside the amputee’s bone (3.) to durably and safely link the tube to the bone;<br>
 +
                            - our engineered biofilm (4.), surrounding the metallic tube inside the amputee’s stump flesh;<br>
 +
                            - a nanoporous membrane made of PEDOT: PSS (5.), to confine the biofilm within our system, to fixate nerves on it, and to allow the ionic current from nerves to be transformed into an electrical current, that would be processed and used to actuate a bionic prosthesis;<br>
 +
                            - a thin structure (6.) that supports the nanoporous membrane and transmits electric current from nerves to the stem (7., 8.).
 +
                            </p>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/b/bd/T--Pasteur_Paris--Figure2.svg">
 +
                            <div class="legend"><b>Figure 2: </b>Diagram of the implantation system parts</div>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/8/8c/T--Pasteur_Paris--Figure3.svg">
 +
                            <div class="legend"><b>Figure 3: </b>Implantation cross section view</div>
 +
                        </div>
 +
                        <div class="block title"><h3 style="text-align: left;">Conceiving the device</h3></div>
 +
                        <div class="block full">
 +
                            <p>We designed an ergonomic and functional device (<b>Figure 4</b>) to link the stump to a bionic prosthesis, composed of:<br>
 +
                            - a three parts plastic case made of light-weight, heat and shock resistant injection moldable plastic (ABS - Acrylonitrile-Butadiene-Styrene), to safely enclose technical parts. Injection molding is a reliable process that permits a low cost mass production. Two removable shells (1.) surround the main structure (2.) to facilitate maintenance. An elastomer seal (3.) is placed between these parts and make the device waterproof. Moreover, plastic have been textured to make user’s daily interactions with his device easier;<br>
 +
                            - a antibacterial ceramic shell (4.), placed between the stump and the device, to improve hygiene and to protect the user from friction; <br>
 +
                            - electronic parts, to amplify and process the signal (5.), to charge the device (6., 7., 8.), to store (9.) and to send data (10.).
 +
                            </p>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/1/10/T--Pasteur_Paris--Figure4.svg">
 +
                            <div class="legend"><b>Figure 4: </b>Exploded drawing of Neuronarch device</div>
 +
                        </div>
 +
                        <div class="block title"><h3 style="text-align: left;">Conceiving the charger / synchronization station</h3></div>
 +
                        <div class="block full">
 +
                            <p>We designed an easy to use charging / synchronization station (<b>Figure 5</b>), composed of:<br>
 +
- a plastic case (1., 2.) made of ABS, to safely enclose technical parts;<br>
 +
- electronic parts, to charge the device thanks to induction (3.) and a USB-C plug (4.), to send and receive data via wifi and bluetooth connection (5.), to save data via a micro SD card (6.), to demonstrate the charging and synchronization process via a LED ring (7.);<br>
 +
- an elastic strip (8.) placed at the back of the charging station, to store cables during transportation. </p>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/3/36/T--Pasteur_Paris--Figure5.svg">
 +
                            <div class="legend"><b>Figure 5: </b>Exploded of Neuronarch charging station</div>
 +
                        </div>
 +
                        <div class="block title"><h3 style="text-align: left;">Conceiving the secured communication system between our device and the digital world</h3></div>
 +
                        <div class="block full">
 +
                            <p>We designed an efficient system to allow our device to securely exchange data with the digital world. Thanks to integrated electronic parts and to the designed digital architecture, data from nerves signals, bionic prosthesis movements, and user’s health status can be recorded, stored and exchanged. An online algorithme would learn from the user on a daily basis, and improve future interactions. To do so, our communication system (<b>Figure 6</b>) is composed of:<br>
 +
- Bluetooth Low Energy, a very energy-efficient technology enabling heavy data transfer on short distance, to share daily stored data from the device to the charging station, and vice versa;<br>
 +
- Wifi connection, to exchange those data with the distant secure NeuronArch server, and vice versa.</p>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/e/e5/T--Pasteur_Paris--Figure6.svg">
 +
                            <div class="legend"><b>Figure 6: </b>Communication network</div>
 +
                        </div>
 +
                        <div class="block title"><h3 style="text-align: left;">Conceiving the app / website</h3></div>
 +
                        <div class="block full">
 +
                            <p>Finally, we designed an app / website to create a user friendly interface. This app / website allows every NeuronArch user to store, monitor, understand, and share with a doctor his personal data. To do so, our app / website (<b>Figure 7</b>) is composed of:<br>
 +
- a personal home page (1.), to have a general overview regarding health data, charging level, and general notifications;<br>
 +
- a personal dashboard (2.), to monitor recorded health data such as glycemia, blood pressure, etc.;<br>
 +
- a medical appointment booking platform (3.), including registered primary doctor availabilities, prosthetists locations, etc.;<br>
 +
- a unique QR code (4.), to securely share recorded personal data with the user’s doctors during appointments. </p>
 +
                        </div>
 +
                        <div class="block full">
 +
                            <img src="https://static.igem.org/mediawiki/2018/8/8f/T--Pasteur_Paris--Schemas_technique_APPEtienne.jpg">
 +
                            <div class="legend"><b>Figure 7: </b>Diagram of the app principle screens</div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            <!--End : Third-->
 +
            <!--Begin : Fourth-->
 +
                <div class="block full bothContent">
 +
                    <div class="block dropDown" id="Prototype">
 +
                        <h4>Prototyping a device and an app</h4>
 +
                    </div>
 +
                    <div class="block hiddenContent">
 +
                        <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 +
                        <div class="block full">
 +
                            <p>Once our solution digitally designed, we had to prototype both the device and the app in real. Thanks to rapid prototyping tools, such as 3D printers (FormLabs Form2 (<b>Figure 1</b>), FormWash, FormCure, and Ultimaker 3), laser cutting (Trotec Speedy360), and hands-on work (sand (<b>Figure 2 and 3)</b>, assembly, paint, finishes, etc.), we prototyped the device. Thanks to digital prototyping tools, such as desktop publishing softwares (Adobe Photoshop, Adobe Illustrator, Google Gallery), we prototyped the app and the website. This step helped the team to check and validate products dimensions, ergonomics, look and feel. </p>
 +
                        </div>
 +
                        <div class="block half">
 +
                            <img src="https://static.igem.org/mediawiki/2018/0/01/T--Pasteur_Paris--ResinePrinting.jpg">
 +
                            <div class="legend"><b>Figure 1: </b>Resine printing of the charger</div>
 +
                        </div>
 +
                        <div class="block half">
 +
                            <img src="https://static.igem.org/mediawiki/2018/d/d2/T--Pasteur_Paris--Sanding1.jpg">
 +
                            <div class="legend"><b>Figure 2: </b>Sanding of the plastic case</div>
 +
                        </div>
 +
                        <div class="block half">
 +
                            <img src="https://static.igem.org/mediawiki/2018/2/2e/T--Pasteur_Paris--Sanding2.jpg">
 +
                            <div class="legend"><b>Figure 3: </b>Sanding of the plastic case</div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            <!--End : Fourth-->
 +
            <!--Begin : Fifth-->
 +
                <div class="block full bothContent">
 +
                    <div class="block dropDown" id="Communication">
 +
                        <h4>Communication</h4>
 +
                    </div>
 +
                    <div class="block hiddenContent">
 +
                        <span class="closeCross"><img src="https://static.igem.org/mediawiki/2018/6/67/T--Pasteur_Paris--CloseCross.svg"></span>
 +
                        <div class="block full">
 +
                            <p>Designing a strong visual identity is a key element in NeuronArch’s communication. Thanks to desktop publishing softwares (Adobe Photoshop, Adobe Illustrator, Adobe In Design, Adobe Premiere Pro, Adobe After Effect), we conceived a global graphic chart easy to understand for users and general public. This visual indentity includes iGEM Pasteur Paris 2018 logotype, NeuronArch logotype, pictograms, banners, graphic composition and color gradients both for print or digital medium. All these elements have been applied to printed formats such as flyers, communication posters and scientific poster, as well as digital formats such as NeuronArch app and website, wiki, etc. Professional photographic tools (Nikon D3200, Profoto flash kit, Manfrotto background) have been also used to create NeuronArch’s user scenario photographies. </p>
 +
                            <div class="block two-third centric">
 +
                                <img src="https://static.igem.org/mediawiki/2018/5/59/T--Pasteur_Paris--CommunicationMedium.gif">
 +
                                <div class="legend"><b>Figure 1: </b>Presentation of our visual identity</div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            <!--End : Fifth-->
 +
            <video></video>
 
         </div>
 
         </div>
       
 
 
     </div>
 
     </div>
 
</html>
 
</html>

Revision as of 10:03, 15 October 2018

""

There are many kind of design approaches : « space designers » create new places to live in, « sound designers » create new experiences to hear, « food designers » create new taste to eat, « graphic designers » create new signs and symbols to see, and « digital designers » create new interfaces to navigate into the digital world.

iGEM Pasteur team integrates industrial designers. Industrial design is a creative discipline that aims to create innovative solutions in order to solve contemporary issues in various fields : health, well-being, energy, mobility, habitat, food, etc. When designing new products or services, designers use a user centric approach that integrates several notions such as usages, ergonomics, industrial processes, technologies, social, cultural, environmental and economical aspects. Taking in account all these parameters allows designers to conceive solutions that address the targeted issues in a relevant way and that benefit to the user.

Nowadays, industrial design is evolving. To address issues in a more and more complexe and accurate way, industrial designers are getting closer to science by working with scientists and by settling in the labs. Our team is a good example of these new ways to co-create tomorrow’s innovations.

Despite promising opportunities offered by these new cooperations, designers and scientists does not have the same cultures, languages, tools, etc. that avoid these collaborations to be fruitful. To overcome these issues, we shared and thought design tools and methodologies to our team mates in order to build a common ground for understanding and co-creation. Once done, we followed the subsequent process :

The first step of our innovation process consisted in an immersion phase. For a better understanding of our subject, we had to:
-come up with a state of the art, recording and analyzing existing or inspiring initiatives, actors, and institutions;
-meet diverse experts, from associations (ADEPA, Figure 1) to industries (I.CERAM, Figure 2), going through national institutes (CERAH, Figure 3), or hospitals (Georges Pompidou hospital, Figure 4);
-identify specific literature and technical documents regarding existing prosthesis;

This step led us to understand amputees daily lives (behaviors, psychology, life environments, healthcare system, economic resources, etc.) and to specify the main issues (such as bacterial infections) and challenges to address in order to propose them relevant and effective innovations. These contents (data, testimonies, etc.) have been collected thanks to humans and social tools (semi-directive interview grids), design tools (mood boards), and documentation tools (photography, video, sound recording).

Figure 1: Meeting with Jean-Pascal Hons, member of ADEPA
Figure 2: Visit of I.CERAM's factory
Figure 3: Meeting with CERAH's orthopaedists
Figure 4: Interview of Dr. Benjamin Bouyer

After identifying knowledge, references, issues and constraints, we started a problem solving process by sketching first ideas, thanks to design tools, such as:
-brainstorming and post-it sessions (Figure 1), to write down the first ideas;
-cartographic and mind-mapping tools, to structure ideas;
-sketching, user journey and roadmaps, to give form to the first concepts.

Thanks to the previous step and to our network of experts, we filtered generated ideas in order to keep only the more adapted and relevant solutions regarding amputee’s behaviors, habits, psychology, life environments, economic resources, etc.

Figure 1: Post-it session

To make the step from the first ideas to tangible solutions, we designed a complete system (hardware and software solutions) including:
- an implantation stem featuring our engineered biofilm;
- a device making the bridge between the stump and a bionic prosthesis, to collect and process the signal from nerves;
- a charging station, to recharge the device and synchronize data with a distant server;
- an app / website, to monitor informations, such as device’s battery level, health status, etc.

In order to design these solutions in a relevant, feasible and comfortable way, we payed strong attention to the device dimensions, ergonomics, assemblies, materials, colors, look and feel, electronic parts, production process and cost. The following devices have been conceived and developed thanks to design and engineering knowledge, skills and tools (McNeel Rhino 3D (Figure 1) as 3D modeling tool, Luxion Keyshot as 3D rendering tool), as well as scientific and industrial advice from experts. Colors, materials and finishes have been chosen regarding our devices constraints and thanks to material databases and color charts.

Figure 1: 3D Modelisation of our device and charger

Conceiving the functional stem

We designed a fully functional stem (Figure 2 and 3) composed of:
- a biocompatible tube made of titanium, to mechanically assemble the device to the user’s stump (1.). This material have been chosen instead of stainless steel 316L thanks to the mechanical modeling of the 3D representation of a humerus bone with a prosthesis (Download the mechanical modeling here);
- a porous ceramic part (2.), surrounding the metallic tube inside the amputee’s bone (3.) to durably and safely link the tube to the bone;
- our engineered biofilm (4.), surrounding the metallic tube inside the amputee’s stump flesh;
- a nanoporous membrane made of PEDOT: PSS (5.), to confine the biofilm within our system, to fixate nerves on it, and to allow the ionic current from nerves to be transformed into an electrical current, that would be processed and used to actuate a bionic prosthesis;
- a thin structure (6.) that supports the nanoporous membrane and transmits electric current from nerves to the stem (7., 8.).

Figure 2: Diagram of the implantation system parts
Figure 3: Implantation cross section view

Conceiving the device

We designed an ergonomic and functional device (Figure 4) to link the stump to a bionic prosthesis, composed of:
- a three parts plastic case made of light-weight, heat and shock resistant injection moldable plastic (ABS - Acrylonitrile-Butadiene-Styrene), to safely enclose technical parts. Injection molding is a reliable process that permits a low cost mass production. Two removable shells (1.) surround the main structure (2.) to facilitate maintenance. An elastomer seal (3.) is placed between these parts and make the device waterproof. Moreover, plastic have been textured to make user’s daily interactions with his device easier;
- a antibacterial ceramic shell (4.), placed between the stump and the device, to improve hygiene and to protect the user from friction;
- electronic parts, to amplify and process the signal (5.), to charge the device (6., 7., 8.), to store (9.) and to send data (10.).

Figure 4: Exploded drawing of Neuronarch device

Conceiving the charger / synchronization station

We designed an easy to use charging / synchronization station (Figure 5), composed of:
- a plastic case (1., 2.) made of ABS, to safely enclose technical parts;
- electronic parts, to charge the device thanks to induction (3.) and a USB-C plug (4.), to send and receive data via wifi and bluetooth connection (5.), to save data via a micro SD card (6.), to demonstrate the charging and synchronization process via a LED ring (7.);
- an elastic strip (8.) placed at the back of the charging station, to store cables during transportation.

Figure 5: Exploded of Neuronarch charging station

Conceiving the secured communication system between our device and the digital world

We designed an efficient system to allow our device to securely exchange data with the digital world. Thanks to integrated electronic parts and to the designed digital architecture, data from nerves signals, bionic prosthesis movements, and user’s health status can be recorded, stored and exchanged. An online algorithme would learn from the user on a daily basis, and improve future interactions. To do so, our communication system (Figure 6) is composed of:
- Bluetooth Low Energy, a very energy-efficient technology enabling heavy data transfer on short distance, to share daily stored data from the device to the charging station, and vice versa;
- Wifi connection, to exchange those data with the distant secure NeuronArch server, and vice versa.

Figure 6: Communication network

Conceiving the app / website

Finally, we designed an app / website to create a user friendly interface. This app / website allows every NeuronArch user to store, monitor, understand, and share with a doctor his personal data. To do so, our app / website (Figure 7) is composed of:
- a personal home page (1.), to have a general overview regarding health data, charging level, and general notifications;
- a personal dashboard (2.), to monitor recorded health data such as glycemia, blood pressure, etc.;
- a medical appointment booking platform (3.), including registered primary doctor availabilities, prosthetists locations, etc.;
- a unique QR code (4.), to securely share recorded personal data with the user’s doctors during appointments.

Figure 7: Diagram of the app principle screens

Once our solution digitally designed, we had to prototype both the device and the app in real. Thanks to rapid prototyping tools, such as 3D printers (FormLabs Form2 (Figure 1), FormWash, FormCure, and Ultimaker 3), laser cutting (Trotec Speedy360), and hands-on work (sand (Figure 2 and 3), assembly, paint, finishes, etc.), we prototyped the device. Thanks to digital prototyping tools, such as desktop publishing softwares (Adobe Photoshop, Adobe Illustrator, Google Gallery), we prototyped the app and the website. This step helped the team to check and validate products dimensions, ergonomics, look and feel.

Figure 1: Resine printing of the charger
Figure 2: Sanding of the plastic case
Figure 3: Sanding of the plastic case

Designing a strong visual identity is a key element in NeuronArch’s communication. Thanks to desktop publishing softwares (Adobe Photoshop, Adobe Illustrator, Adobe In Design, Adobe Premiere Pro, Adobe After Effect), we conceived a global graphic chart easy to understand for users and general public. This visual indentity includes iGEM Pasteur Paris 2018 logotype, NeuronArch logotype, pictograms, banners, graphic composition and color gradients both for print or digital medium. All these elements have been applied to printed formats such as flyers, communication posters and scientific poster, as well as digital formats such as NeuronArch app and website, wiki, etc. Professional photographic tools (Nikon D3200, Profoto flash kit, Manfrotto background) have been also used to create NeuronArch’s user scenario photographies.

Figure 1: Presentation of our visual identity