Line 3: | Line 3: | ||
<meta charset="utf-8"> | <meta charset="utf-8"> | ||
− | <title>Coding | + | <title>Coding Book</title> |
<link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-menu&action=raw&ctype=text/css" rel="stylesheet" type="text/css"> | <link href="https://2018.igem.org/wiki/index.php?title=Template:NEFU_China/CSS-menu&action=raw&ctype=text/css" rel="stylesheet" type="text/css"> | ||
Line 22: | Line 22: | ||
margin-top: 0px; | margin-top: 0px; | ||
margin-left: 0px; | margin-left: 0px; | ||
+ | } | ||
+ | #menu li ul li:hover ul{ | ||
+ | background:rgba(0,0,0,0.75)!important; | ||
+ | } | ||
+ | li#mainlevel_01 a { | ||
+ | color: #FFE5B5!important; | ||
+ | |||
+ | } | ||
+ | li#mainlevel_01 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_02 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_02 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_03 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_03 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_05 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_05 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_06 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_06 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_07 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_07 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | li#mainlevel_08 a { | ||
+ | color: #FFE5B5!important; | ||
+ | } | ||
+ | li#mainlevel_08 a:hover { | ||
+ | font-size:30px!important; | ||
+ | text-shadow:0px 0px 8px #FFE5B5, | ||
+ | 0px 0px 42px #FFE5B5, | ||
+ | 0px 0px 72px #FFE5B5, | ||
+ | 0px 0px 150px #FFE5B5; | ||
+ | } | ||
+ | #menu li ul li ul li a:hover { | ||
+ | color: rgba(0,223,252,1); | ||
+ | border-top: dotted 1px rgba(255,255,255,0.91); | ||
+ | border-bottom: dotted 1px rgba(255,255,255,0.91); | ||
+ | background: rgba(0,223,252,.02); | ||
+ | } | ||
+ | #nav .mainlevel a { | ||
+ | color: black; | ||
+ | text-decoration:none; | ||
+ | line-height:32px; | ||
+ | display:block; | ||
+ | padding:0 5px; | ||
+ | font-size: 25px!important; | ||
+ | font-family: 'Segoe UI', Roboto, 'Helvetica Neue', Arial, sans-serif, 'Apple Color Emoji', 'Segoe UI Emoji', 'Segoe UI Symbol', 'Noto Color Emoji' !important; | ||
+ | } | ||
+ | .layer-bottom { | ||
+ | z-index: -2; | ||
+ | position: absolute; | ||
+ | margin-top: 36px!important; | ||
} | } | ||
Line 28: | Line 122: | ||
</head> | </head> | ||
<body> | <body> | ||
− | <div id="menu" style="background-color: | + | <!--menu--> |
− | <li id="nav">           | + | |
+ | <div id="menu" style="background-color:rgba(0,0,0,0.6)!important"> | ||
+ | <li id="nav" style="left: 8%!important; width: 100%!important;">           | ||
<!--<a class="menu1" href="#" style="text-align: right;">☰</a>--> | <!--<a class="menu1" href="#" style="text-align: right;">☰</a>--> | ||
<ul class="firstmenu" style="float: left"> | <ul class="firstmenu" style="float: left"> | ||
Line 51: | Line 147: | ||
<a href="https://2018.igem.org/Team:NEFU_China/Experiment"><img id="parts" src="https://static.igem.org/mediawiki/2018/6/62/T--NEFU_China--_RESULTS.png">EXPERIMENT</a> | <a href="https://2018.igem.org/Team:NEFU_China/Experiment"><img id="parts" src="https://static.igem.org/mediawiki/2018/6/62/T--NEFU_China--_RESULTS.png">EXPERIMENT</a> | ||
<ul id="sub_03"> | <ul id="sub_03"> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
<li><a href="https://2018.igem.org/Team:NEFU_China/Lock_Key" target="_self">LOCK & KEY</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Lock_Key" target="_self">LOCK & KEY</a></li> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Suicide" target="_self">SUICIDE</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Suicide" target="_self">SUICIDE</a></li> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Splicing" target="_self">SPLICING</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Splicing" target="_self">SPLICING</a></li> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Demonstrate" target="_self">DEMONSTRATE</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Demonstrate" target="_self">DEMONSTRATE</a></li> | ||
+ | <hr> | ||
+ | <li><a href="https://2018.igem.org/Team:NEFU_China/Basic_Part" target="_self">BASIC PARTS</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:NEFU_China/Composite_Part" target="_self">COMPOSITE PARTS</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:NEFU_China/Improve" target="_self">IMPROVEMENT PARTS</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:NEFU_China/Part_Collection" target="_self">PARTS COLLECTION</a></li> | ||
<hr> | <hr> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Notebook" target="_self">NOTEBOOK</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Notebook" target="_self">NOTEBOOK</a></li> | ||
Line 65: | Line 161: | ||
</ul> | </ul> | ||
</li> | </li> | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<li class="mainlevel" id="mainlevel_05"> | <li class="mainlevel" id="mainlevel_05"> | ||
<a href="https://2018.igem.org/Team:NEFU_China/Model"><img id="model" src="https://static.igem.org/mediawiki/2018/0/0c/T--NEFU_China--_MODEL.png">MODEL</a> | <a href="https://2018.igem.org/Team:NEFU_China/Model"><img id="model" src="https://static.igem.org/mediawiki/2018/0/0c/T--NEFU_China--_MODEL.png">MODEL</a> | ||
Line 96: | Line 174: | ||
<ul id="sub_06"> | <ul id="sub_06"> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Software" target="_self">OVERVIEW</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Software" target="_self">OVERVIEW</a></li> | ||
− | <li><a href="https://2018.igem.org/Team:NEFU_China/Software1" target="_self"> | + | <li><a href="https://2018.igem.org/Team:NEFU_China/Software1" target="_self">CODING</a></li> |
− | <li><a href="https://2018.igem.org/Team:NEFU_China/Software2" target="_self"> | + | <li><a href="https://2018.igem.org/Team:NEFU_China/Software2" target="_self">MISLEADING</a></li> |
+ | <li><a href="https://2018.igem.org/Team:NEFU_China/Software3" target="_self">WORDSEGMENT</a></li> | ||
</ul> | </ul> | ||
</li> | </li> | ||
Line 105: | Line 184: | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Attributions" target="_self">ATTRIBUTIONS</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Attributions" target="_self">ATTRIBUTIONS</a></li> | ||
<li><a href="https://2018.igem.org/Team:NEFU_China/Members" target="_self">MEMBERS</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Members" target="_self">MEMBERS</a></li> | ||
+ | |||
<li><a href="https://2018.igem.org/Team:NEFU_China/Sponsoring" target="_self">SPONSORING</a></li> | <li><a href="https://2018.igem.org/Team:NEFU_China/Sponsoring" target="_self">SPONSORING</a></li> | ||
</ul> | </ul> | ||
Line 117: | Line 197: | ||
</ul> | </ul> | ||
</li> | </li> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
</ul> | </ul> | ||
Line 133: | Line 204: | ||
<img src="https://static.igem.org/mediawiki/2018/0/05/T--NEFU_China--DNA.png" alt="banner" id="banner-img"> | <img src="https://static.igem.org/mediawiki/2018/0/05/T--NEFU_China--DNA.png" alt="banner" id="banner-img"> | ||
</div> | </div> | ||
+ | <div class="layer-bottom"> | ||
+ | |||
+ | <canvas id="canvas" style="background:#000000"></canvas> | ||
+ | |||
+ | <script type="text/javascript"> | ||
+ | |||
+ | window.onload = function(){ | ||
+ | var canvas = document.getElementById("canvas"); | ||
+ | var context =canvas.getContext("2d"); | ||
+ | var W = window.innerWidth; | ||
+ | var H = 5500; | ||
+ | //var H = window.innerHeight*1.5; | ||
+ | canvas.width = W; | ||
+ | canvas.height = H; | ||
+ | var fontSize = 20; | ||
+ | var colunms = Math.floor(W /fontSize); | ||
+ | var drops = []; | ||
+ | for(var i=0;i<colunms;i++){ | ||
+ | drops.push(0); | ||
+ | } | ||
+ | |||
+ | |||
+ | var str1 = "ATCG"; | ||
+ | var str2 = "01"; | ||
+ | function draw(){ | ||
+ | context.fillStyle = "rgba(0,0,0,0.2)"; | ||
+ | context.fillRect(0,0,W,H); | ||
+ | context.font = "700 "+fontSize+"px 微软雅黑"; | ||
+ | context.fillStyle = "#003544"; | ||
+ | for(var i=0;i<colunms/2;i++){ | ||
+ | var index = Math.floor(Math.random() * str1.length); | ||
+ | var x = i*fontSize; | ||
+ | var y = drops[i] *fontSize; | ||
+ | context.fillText(str1[index],x,y); | ||
+ | if(y >= canvas.height){ | ||
+ | drops[i] = 0; | ||
+ | } | ||
+ | if(Math.random() > 0.99){ | ||
+ | drops[i] = 0; | ||
+ | } | ||
+ | drops[i]++; | ||
+ | } | ||
+ | for(var i=colunms/2;i<colunms;i++){ | ||
+ | var index = Math.floor(Math.random() * str2.length); | ||
+ | var x = i*fontSize; | ||
+ | var y = drops[i] *fontSize; | ||
+ | context.fillText(str2[index],x,y); | ||
+ | if(y >= canvas.height){ | ||
+ | drops[i] = 0; | ||
+ | } | ||
+ | if(Math.random() > 0.99){ | ||
+ | drops[i] = 0; | ||
+ | } | ||
+ | drops[i]++; | ||
+ | } | ||
+ | }; | ||
+ | |||
+ | function randColor(){ | ||
+ | var r = Math.floor(Math.random() * 256); | ||
+ | var g = Math.floor(Math.random() * 256); | ||
+ | var b = Math.floor(Math.random() * 256); | ||
+ | return "rgb("+r+","+g+","+b+")"; | ||
+ | } | ||
+ | |||
+ | draw(); | ||
+ | setInterval(draw,60); | ||
+ | }; | ||
+ | |||
+ | </script> | ||
+ | |||
+ | |||
+ | |||
+ | </div> | ||
+ | |||
<div id="background-content"> | <div id="background-content"> | ||
− | <h1>Coding | + | <h1 style="height: 65px;color: yellow!important;">Coding Book</h1> |
<p> | <p> | ||
− | + | In English text, each letter has a certain frequency. We constructed a list of letter frequencies for each letter. Also, in living organisms, each codon is used with a certain frequency. Based on this relationship between English letters and codons, we find out the correspondence between letters and codons by using DFS(Depth First Search) algorithm and optimization arithmetic.<br> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
</p> | </p> | ||
− | < | + | <br> |
− | + | ||
− | + | <hr> | |
− | + | ||
− | + | <br> | |
− | + | <h1 style="height: 65px;color: yellow!important;">Create a letter-frequency table and a codon-frequency table</h1> | |
− | + | ||
− | + | ||
<p> | <p> | ||
− | + | According to the literature, we obtain the information of the frequency of letters and codons. | |
+ | 这里放表格。 | ||
+ | <br> | ||
+ | |||
</p> | </p> | ||
− | < | + | |
− | < | + | <br> |
+ | <br> | ||
+ | <hr> | ||
+ | |||
+ | <br> | ||
+ | <h1 style="height: 65px;color: yellow!important;">Find out the correspondence between letters and codons by using DFS Algorithm</h1> | ||
<p> | <p> | ||
− | + | We build up a tree structure where the codons and the frequency of the codons are stored on each node. Then we use the depth-first search algorithm to traverse down from the root node successively, and match condon-frequence with the letter- frequency to obtain the correspondence between letters and codons.<br> | |
+ | The tree structure is shown in the figure 1.<br> | ||
+ | 这里放树状图。 | ||
</p> | </p> | ||
<br> | <br> | ||
Line 163: | Line 311: | ||
<br> | <br> | ||
− | <h1> | + | <h1 style="height: 65px;color: yellow!important;">Get the optimal solution by using optional algorithm.</h1> |
− | <p> | + | <p > |
− | + | In step 2, we get the correspondence between letters and codons. But some letters have multiple corresponding relationships. For example, in figure 1, the letters E and T correspond to codons GAU, GCU, GAA, E and T also correspond to codons GAU, GCU, AUG. What’s more, the letter T can also correspond to codons GAU, GCU, GCA. Therefore, we use the optimal algorithm to determine one of the multiple correspondence. <br> | |
<br> | <br> | ||
</p> | </p> | ||
− | < | + | <br> |
− | + | <hr> | |
− | + | ||
− | + | <br> | |
− | + | <h1 style="height: 65px;color: yellow!important;">RESULTS</h1> | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<p> | <p> | ||
− | + | Print the correspondence between letters and codons: | |
+ | <br> | ||
+ | Output:<br> | ||
+ | A 8.12| GUA 2.5 GAC 2.75 ACU 2.83 <br> | ||
+ | sum:8.08<br> | ||
+ | B 1.49| CCG 0.42 ACG 1.06 <br> | ||
+ | sum:1.48<br> | ||
+ | C 2.71| CGU 1.06 CUA 1.64 <br> | ||
+ | sum:2.70<br> | ||
+ | D 4.32| UGU 0.86 UUG 1.56 AUA 1.89 <br> | ||
+ | sum:4.31<br> | ||
+ | E 12.02| AAC 2.42 GCU 3.37 GAU 3.99 <br> | ||
+ | sum:9.78<br> | ||
+ | F 2.30| CUU 0.86 CCU 1.44 <br> | ||
+ | sum:2.30<br> | ||
+ | G 2.03| UCC 0.22 UGC 0.44 AUU 1.36<br> | ||
+ | sum:2.02<br> | ||
+ | H 5.92| GCC 1.17 AGG 1.17 CAU 1.36 UUC 2.22<br> | ||
+ | sum:5.92<br> | ||
+ | I 7.31| GUC 1.69 AUG 2.72 GAA 2.89 <br> | ||
+ | sum:7.30<br> | ||
+ | J 0.10| GCU 0.1<br> | ||
+ | sum:0.10<br> | ||
+ | K 0.69| CGA 0.67 <br> | ||
+ | sum:0.67<br> | ||
+ | L 3.98| ACC 0.86 UCG 0.94 UUU 2.17<br> | ||
+ | sum:3.97<br> | ||
+ | M 2.61| CGC 0.92 CCA 1.67 <br> | ||
+ | sum:2.59<br> | ||
+ | N 6.95| UUA 1.58 CAA 1.72 ACA 1.75 GGU 1.89 <br> | ||
+ | sum:6.94<br> | ||
+ | O 7.68| CAG 1.72 UCU 1.94 UGG 1.94 GUG 2.08 <br> | ||
+ | sum:7.68<br> | ||
+ | P 1.82| AGC 0.64 AUC 1.17 <br> | ||
+ | sum:1.81<br> | ||
+ | Q 0.11| GAA 0.11 <br> | ||
+ | sum:0.11<br> | ||
+ | R 6.02| CUG 1.33 CAC 1.33 GAG 1.36 AAU 2.0 <br> | ||
+ | sum:6.02<br> | ||
+ | S 6.28| AGU 1.36 GGC 1.47 AGA 1.56 GCG 1.89 <br> | ||
+ | sum:6.28<br> | ||
+ | T 9.10| AAA 2.0 GUU 2.28 AAG 2.39 UAC 2.42 <br> | ||
+ | sum:9.09<br> | ||
+ | U 2.88| GCA 2.86 <br> | ||
+ | sum:2.86<br> | ||
+ | V 1.11| UCA 1.08 <br> | ||
+ | sum:1.08<br> | ||
+ | W 2.09| CGG 0.56 CUC 0.75 GGG 0.78 <br> | ||
+ | sum:2.09<br> | ||
+ | X 0.17| AUG 0.17 <br> | ||
+ | sum:0.17<br> | ||
+ | Y 2.11| CCC 0.92 GGA 1.19 <br> | ||
+ | sum:2.11<br> | ||
+ | Z 0.07| GAU 0.07 <br> | ||
+ | sum:0.07<br> | ||
+ | |||
</p> | </p> | ||
− | <br><br><br> | + | |
+ | <br> | ||
+ | |||
+ | <br><br> | ||
</div> | </div> | ||
<div id="background-reference"> | <div id="background-reference"> | ||
− | <h1>Reference</h1> | + | <h1 style="height: 65px;color: yellow;">Reference</h1> |
<p> <a href="#"> [1] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a> | <p> <a href="#"> [1] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. <em><em>Nat Chem Biol 13</em></em> , 432-438 </a> | ||
<br> | <br> | ||
Line 253: | Line 452: | ||
</td> | </td> | ||
</tr> | </tr> | ||
− | |||
</table> | </table> | ||
</div> | </div> |
Revision as of 18:49, 15 October 2018
Coding Book
In English text, each letter has a certain frequency. We constructed a list of letter frequencies for each letter. Also, in living organisms, each codon is used with a certain frequency. Based on this relationship between English letters and codons, we find out the correspondence between letters and codons by using DFS(Depth First Search) algorithm and optimization arithmetic.
Create a letter-frequency table and a codon-frequency table
According to the literature, we obtain the information of the frequency of letters and codons.
这里放表格。
Find out the correspondence between letters and codons by using DFS Algorithm
We build up a tree structure where the codons and the frequency of the codons are stored on each node. Then we use the depth-first search algorithm to traverse down from the root node successively, and match condon-frequence with the letter- frequency to obtain the correspondence between letters and codons.
The tree structure is shown in the figure 1.
这里放树状图。
Get the optimal solution by using optional algorithm.
In step 2, we get the correspondence between letters and codons. But some letters have multiple corresponding relationships. For example, in figure 1, the letters E and T correspond to codons GAU, GCU, GAA, E and T also correspond to codons GAU, GCU, AUG. What’s more, the letter T can also correspond to codons GAU, GCU, GCA. Therefore, we use the optimal algorithm to determine one of the multiple correspondence.
RESULTS
Print the correspondence between letters and codons:
Output:
A 8.12| GUA 2.5 GAC 2.75 ACU 2.83
sum:8.08
B 1.49| CCG 0.42 ACG 1.06
sum:1.48
C 2.71| CGU 1.06 CUA 1.64
sum:2.70
D 4.32| UGU 0.86 UUG 1.56 AUA 1.89
sum:4.31
E 12.02| AAC 2.42 GCU 3.37 GAU 3.99
sum:9.78
F 2.30| CUU 0.86 CCU 1.44
sum:2.30
G 2.03| UCC 0.22 UGC 0.44 AUU 1.36
sum:2.02
H 5.92| GCC 1.17 AGG 1.17 CAU 1.36 UUC 2.22
sum:5.92
I 7.31| GUC 1.69 AUG 2.72 GAA 2.89
sum:7.30
J 0.10| GCU 0.1
sum:0.10
K 0.69| CGA 0.67
sum:0.67
L 3.98| ACC 0.86 UCG 0.94 UUU 2.17
sum:3.97
M 2.61| CGC 0.92 CCA 1.67
sum:2.59
N 6.95| UUA 1.58 CAA 1.72 ACA 1.75 GGU 1.89
sum:6.94
O 7.68| CAG 1.72 UCU 1.94 UGG 1.94 GUG 2.08
sum:7.68
P 1.82| AGC 0.64 AUC 1.17
sum:1.81
Q 0.11| GAA 0.11
sum:0.11
R 6.02| CUG 1.33 CAC 1.33 GAG 1.36 AAU 2.0
sum:6.02
S 6.28| AGU 1.36 GGC 1.47 AGA 1.56 GCG 1.89
sum:6.28
T 9.10| AAA 2.0 GUU 2.28 AAG 2.39 UAC 2.42
sum:9.09
U 2.88| GCA 2.86
sum:2.86
V 1.11| UCA 1.08
sum:1.08
W 2.09| CGG 0.56 CUC 0.75 GGG 0.78
sum:2.09
X 0.17| AUG 0.17
sum:0.17
Y 2.11| CCC 0.92 GGA 1.19
sum:2.11
Z 0.07| GAU 0.07
sum:0.07
Reference
[1] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438
[2] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438
[3] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438
[4] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438
[5] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438
[6] Pu, Jinyue and Zinkus-Boltz, Julia and Dickinson, Bryan C. (2017) Evolution of a split RNA polymerase as a versatile biosensor platform. Nat Chem Biol 13 , 432-438 s