Membrane
The membrane filter is a key element of our prosthesis system, allowing the confinement of the genetically modified bacteria and the conduction of neuron impulses . We tested two types of membranes: Sterlitech Polycarbonate Gold-Coated Membrane Filters (pores diameter of 0.4 micrometers) and Sterlitech Alumina Oxide Membrane Filters (pores diameter of 0.2 micrometers).
Sterlitech Alumina Oxide Membrane Filters were coated with different types of biocompatible conductive polymers: PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate), PEDOT:Cl and PEDOT:Ts .
To characterize the potential of the different types of membranes to be integrated into our prosthesis system, we designed a PDMS well chip for that exact purpose , a modified culture well . The bottom of the well is a membrane, and a platinum wire touching the membrane electrically connects the inside of the well with the exterior.
Figure 22: PEDOT:PSS
Confinement
The first requirement for the membrane is that it needs to meet is the ability to retain bacteria of the size of E. coli (1-2 micrometers). Theoretically, confinement should be garanteed because the membrane's pore size is smaller than E. coli. Three experiments were conducted on membrane microchannel chips to prove that the gold-coated membranes can retain bacteria.
First experiment
The optical density of an E. coli liquid culture was measured. Liquid culture was poured in a microchannel chip on one side, and optical density of the liquid that flowed to the other side of the microchannnels was measured.
Results
OD (600 nm) of liquid culture: 0.44
OD (600 nm) of liquid after flowing through the chip: 0.41.
Interpretation
We expected a much lower OD after liquid flow through the chip, so this suggests the presence of a leak in the chip, that allowed the liquid culture to flow without retaining the bacteria.
Second experiment
A few drops of RFP expressing DH5alpha E. coli liquid culture were poured in a membrane microchannel chip. The chip was then observed under a microscope.
Interpretation
Membrane is located on the right side, and liquid culture was poured on that side, before the membrane. Bacteria was still able to flow to the left side, but they were not following the microchannels, instead they were all just flowing in a single direction, suggesting the membrane lifted the microfluidic chip from below and thus caused massive leakings in the microfluidic circuitry.
Figure 23: Membrane microchannel chip under microscope
Third experiment
A few drops of E. coli liquid culture were poured in a membrane microchannel chip. The chip was then observed under a microscope.
Interpretation
The membrane is located on the left side, and liquid culture was poured on that side, before the membrane. Bacteria this time wasn't able to flow to the right side, the membrane stopped their progression. It is clear on figure 24, that the left side is crowded with bacteria, and the right side is empty (apart from a few PDMS impurities). Final conclusion on the membrane microchannel chips is, that although the integration method of the membrane filter in the chip is complicated and a bit improvised, some chips apparently do fulfill their purpose, demonstrating this way the confinement of the bacteria with a membrane. Leaks observed in previous experiments were also probably caused by membrane filters that were not correctly stretching across the whole chip.
Figure 24: Membrane microchannel chip under microscope with retaining membrane
Polymer coating
Bare alumina oxide membranes were coated with different polymers to enhance their conductivity values and their biocompatibility.
Figure 25: White alumina oxide membranes before coating
Figure 26: Scanning electron microscopy of bare alumina oxide membranes
PEDOT:PSS coating
The color of the alumina oxide membranes changed radically from light grey to black, suggesting the deposit of PEDOT:PSS on the membrane, as expected. Scanning electron microscopy (courtesy of Bruno Bresson, Sciences et Ingénierie de la Matière Molle Physico-chimie des Polymères et Milieux Dispersés) of a PEDOT:PSS-coated membrane revealed cluster-like formation of PEDOT:PSS deposits. It is thought that the lack of uniformity of the coating won't give the expected results in matters of biocompatibility and conductivity.
Figure 27: PEDOT:PSS-coated membranes
Figure 28: Scanning electron microscopy of PEDOT:PSS-coated membrane
PEDOT:Cl and PEDOT:Ts coating
The color of the alumina oxide membranes changed radically from light grey to black with green shades for PEDOT:Cl and blue shades for PEDOT:Ts, suggesting the deposit of the polymers on the membranes, as expected. Scanning electron microscopy reveals a uniform thickening of the membrane's surface, suggesting a uniform PEDOT:Cl coating of the membrane. We expect better results from the PEDOT:Cl-coated and PEDOT:Ts-coated membranes than PEDOT:PSS-coated ones.
Figure 29: PEDOT:Cl-coated membranes
Figure 30: PEDOT:Ts-coated membranes
Figure 31: Scanning electron microscopy of PEDOT:Cl-coated membrane
Conductivity
The membranes used in our system should possess good electric conductive capabilities for nerve influx conduction. The goal here is to evaluate the conductivity of the membranes.
Figure 32: Hand-made PDMS well chip
The conductivity of the membranes was measured on a self-made device. It consists of a culture well made of PDMS (polydimethylsiloxane), with a membrane filter at its bottom and a platinum wire linking the conductive membrane filter with the exterior.
Platinum wire
As in the end we were going to measure the conductivity of the system biofilm+membrane+platinum wire, we wanted to simplify the measurements and neglect the impact of the platinum wire. Function generator was set on sine. The physical quantities measured here are Eg, the generator's tension amplitude and Ep, the voltage difference between the two extremities of a platinum wire. the quantity calculated here is 20*log(Ep/Eg) for different frequencies.
Results
Figure 33: Conductivity of a platinum wire for different frequencies
Interpretation
Voltage difference calculated is extremely low, indicating a very good conductivity for the platinum wires, so its resistance (in low frequencies) could be neglected at first glance when it would be used in PDMS well chips. Resistance increases in higher frequencies, because of the skin-effect in metals: the strip transforms into an antenna. But as we were going to use only low frequencies, this didn't affect us.
Frequency impact on membrane conductivity
Before measuring the conductivity of multiple membranes, we needed to have an overview of the impact of the frequency on the conductivity of a membrane. We tested two gold-coated membranes.Function generator was set on sine. The physical quantities measured here are Eg, the generator's tension amplitude and Ep, the voltage difference between the extremity of the platinum wire outside the well chip and a point on the edge of the membrane of the chip. the quantity calculated here is 20*log(Ep/Eg) for different frequencies.
Results
Figure 34: Conductivity of a platinum wire for different frequencies
Interpretation
Voltage difference calculated is very low, indicating a very good conductivity for the gold-coated membrane. Technically, we measured the conductivity of the system membrane+platinum wire, but we showed that the wire's conductivity could be neglected. Resistance increases in higher frequencies, again because of the skin-effect in metals. But as we were going to use only low frequencies, this doesn't affect us, and moreover, the frequency response is flat for wide range of low frequencies.
Membrane conductivity
We measured the conductivity of 6 membranes on PDMS well chips (2 gold-coated, 1 bare alumina oxide, 1 PEDOT:PSS-coated, 1 PEDOT:Cl-coated, 1 PEDOT:Ts-coated). Here we show the electric circuit that we used for the following experiments.
Figure 35: Electric circuit used for the different conductivity measurements
Function generator was set on square at 200 Hz. The physical quantities measured are Eg, the generator tension amplitude, and Ep, the amplitude of the voltage difference between a point on the membrane inside the well and the extremity of the platinium strip outside the well. Tension amplitude of the resistor is given by Er = Eg - Ep. Current flowing through the electric circuit is calculated with I = Er/R. Conductivity of the membrane is given by I/Ep. Conductivity of each membrane was measured 3 times.
Results
Figure 36: Conductivity of a platinum wire for different frequencies (mean value and standard deviation for each membrane)
Interpretation
Bare alumina oxide and PEDOT:PSS-coated membranes show similar conductivies, indicating the incomplete coating of PEDOT:PSS on alumina oxide membranes. On the opposite, PEDOT:Cl and PEDOT:Ts exhibit on average better conductivities, but in the same time, the coating of these membranes revealed by electron microscopy seemed to have covered the alumina oxide membranes in a more uniform way, ensuring enhanced conductive capabilities. These results can be criticized because of the high deviation and because the membranes conductivity was measured after several biofilms were grown on them, which may have affected the measurements.
Biocompatibility and biofilm conductivity
One last important property of the membranes to measure was the capability of bacteria to form a biofilm on them, as in our prosthesis system, the membrane is going to be directly in contact with the genetically modified biofilm, as well as the human body.
We used the last section of the following protocol to form biofilms in our PDMS well chips and to measure the biofilm growth.
Results: biofilm growth
Biofilm growth was measured 4 times in total. For each series of measurements, the measured optical densities were divided by the optical density of the base liquid culture, to normalize the measures.
Figure 37: Biofilm growth (mean value and standard deviation for each type of membrane)
Results: biofilm conductivity
For conductivity measurements, we used the same electric circuit as in figure 35 . Function generator was set on square at 200 Hz. The physical quantities measured are Eg, the generator tension amplitude, and Ep, the amplitude of the voltage difference between a point on the biofilm inside the well and the extremity of the platinium strip outside the well. Tension amplitude of the resistor is given by Er = Eg - Ep. Current flowing through the electric circuit is calculated with I = Er/R. Conductivity of the membrane is given by I/Ep. Conductivity of each membrane with a biofilm was repeated 3 times.
Figure 38: Membrane conductivity with biofilm (mean value and standard deviation for each type of membrane)
To approximate very roughly the conductivity of the biofilm, the average conductivity values of the membranes with a biofilm were divided by the corresponding average biofilm growth values, and the conductivity of the membrane was then substracted.
Figure 39: Estimated biofilm conductivity
Interpretation
As told by the membrane manufacturer, biofilm formation on gold membranes seems indeed to be more difficult than on other membranes. However we expected PEDOT:PSS-coated membranes to stimulate more the growth of biofilm, but perhaps this may be just another indicator of the incomplete coating. Surprisingly, PEDOT:Cl tends to allow better formation of biofilms. We realized only after the experiments the need for a control biofilm culture without membrane.
Conductivity with a biofilm is better with gold membranes, although the conductivity of gold membranes themselves isn't the best. This may be explained by the fact, that because of the thinner biofilm formation on gold membranes, the electrical wires touched not only the biofilm, but also the membrane, bypassing the biofilm and leading to imprecise measurements.
Approximate biofilm conductivity is therefore probably wrong for the gold membrane. However, it is interesting to notice that the biofilm conductivity measured for the bare alumina oxyde, PEDOT:Ts-coated one and PEDOT:PSS-coated give more or less the same value, suggesting that with more measurements, adapted equipement and better methods it would be indeed possible to measure the biofilm's conductivity with our PDMS well chips.