Abstract
Nepetalactone is the active ingredient in catnip, a feline attractant, and a potential green pesticide. It has a common precursor, nepetalactol, with monoterpene indole alkaloids (MIAs) which is a group of plant-derived compounds of great therapeutic value, such as vincristine (an anti-cancer drug). We aim to synthesize nepetalactol through a mutualistic division of labour between E. coli and yeast. Besides, we design, characterize, and use a library of transcription activator-like effectors (TALE) stabilized promoters to regulate the heterologous gene expression in E. coli. Our applied design conceives the future application of nepetalactone on stray cat control, which we consider as an opportunity for public engagement and education.
Metabolic engineering can be more than providing biofuels, medicines and fragrance. It does provide solutions to social issues! Here we envision the application of nepetalactone in stray cats rescue by employing Value Sensitive Design, making the use of synthetic biology readily comprehensible to the public.