Bronze medal criteria
Explanation | Criteria achieved |
Registration and Giant Jamboree Attendance | We registered for the iGEM Giant Jamboree and we can't wait to be there! |
Competition Deliverables | We met the deadlines for every required deliverable. |
Attributions | We completed the attributions page on our wiki. |
Characterization / Contribution | We successfully completed the InterLab Measurement Study. |
Silver medal criteria
Explanation | Criteria achieved |
Validated Part / Validated Contribution | We created a new BioBrick part as expected : BBa_K2616000. This part permits to express pro-NGF and secrete it in the extracellular medium using E. coli type I secretion system. Since the export peptide is not processed when passing through the secretion pore, we separated pro-NGF from this 60 aminoacid long sequence by a cleaving site for TEV protease. This part also permits to secrete TEV protease, under the same promoter, via this same secretion system. We succeeded in characterizing our pro-NGF by sequencing, Western blot and mass spectrometry. |
Collaboration | We hosted the 4th Parisian Meet-up where we organized a Tiny Jamboree in the morning in order to practice with all the French teams for the Giant one in October. We also organized and attended round tables about bioethics with multiple professionals during the afternoon. We collaborated with other iGEM teams for the Interlab (Sorbonne U Paris), by sharing and testing protocols (WPI Worcester) as well as other non-scientific collaborations. You can read about them on this page . |
Human Practices | We took into account the advice of many professionals in the conception and confinement of our interface NeuronArch. Our jurist team has worked with the Ethical Committee of the Institut Pasteur on the ethical and safety questions surrounding the use of GMOs inside the human body. They also advised us on not collecting data on persons without a proper medical supervision. We have tried to destigmatize the use of GMOs to the general public. Because we also thought about the consequences of a possible release of our GMOs in the environment, we also integrated a thermosensitive Kill-Switch inside our bacteria. You can read about it on this page. |
Gold medal criteria
Explanation | Criteria achieved |
Integrated Human Practices | We thought with care about every aspect of our project by interviewing many experts of their fields (biofilms, infections, microfluidics and prosthesis) but also associations for the right of amputees as well as surgeons and took into account their advice in our final biological interface and in our prototype. You can read about the progression of NeuronArch on this page |
Improve a Previous Part or Project | We improved the part BBa_K237002 from the iGEM team SDU Denmark 2009. We optimized the RIP sequence for our chassis E. coli BL21 (DE3) pLysS strain and added a secretion signal peptide to address the RIP to E. coli Type II Secretion System. We confirmed our part BBa_K2616001 by sequencing. |
Model Your Project | We modeled how NGF is produced in our modified E. coli , its diffusion in a medium environment and its consequences on neurons growth. It helped to have an insight on which concentration of NGF to use in our experiments and also helped in predicting the future growth of nerves inside of our prototype. The mechanical modeling presents tools to visualize the constraints applied on the humerus and femur bone and was used to choose the best material to use for a prosthesis and the best configuration possible for a bone. The modeling of the humerus helped us to limit the length of the osseointegrated stem. Learn more about our modeling on this page |
Model Your Project | We modeled how NGF is produced in our modified E. coli , its diffusion in a medium environment and its consequences on neurons growth. It helped to have an insight on which concentration of NGF to use in our experiments and also helped in predicting the future growth of nerves inside of our prototype. The mechanical modeling presents tools to visualize the constraints applied on the humerus and femur bone and was used to choose the best material to use for a prosthesis and the best configuration possible for a bone. The modeling of the humerus helped us to limit the length of the osseointegrated stem. Learn more about our modeling on this page |