|
|
(42 intermediate revisions by 3 users not shown) |
Line 1: |
Line 1: |
− | <html>
| + | {{Goettingen/Main}} |
− | <head>
| + | <div class="site-content"> |
− | <meta charset="UTF-8">
| + | <div class="article"> |
− | <meta name="viewport" content="width=device-width, initial-scale=1.0">
| + | <div class="article_head-line"> |
− | <meta http-equiv="X-UA-Compatible" content="ie=edge">
| + | <h2>Glyphosate on my plate?! Detection and inactivation of Glyphosate using the soil bacterium <i>Bacillus subtilis </i></h2> |
− | <style>
| + | </div> |
− | .content{
| + | <p> |
− | font-family: Tahoma, Geneva, sans-serif;
| + | Feeding the steadily increasing world population is a major task that heavily relies on the use of fertilizers and herbicides. Glyphosate is the most prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades and its usage is still increasing. The herbicide has a bad reputation, as it is thought to be harmful to human health and its effect on the environment is controversially discussed. Several studies indicate that glyphosate could also pose a threat to the biodiversity on our planet. However, no real long-term studies have been carried out so far in this regard. The goal of our team is to approach the glyphosate controversy and to improve the knowledge about the impact of the herbicide on the physiology of a soil-dwelling organism. The Gram-positive model bacterium <i>Bacillus subtilis</i> is a soil-dwelling organism that perfectly suited to achieve our goal. Previously, it has been demonstrated that the growth of <i>B. subtilis</i> is strongly inhibited by glyphosate. At first, we have assessed the potential of <i>B. subtilis</i> to adapt to toxic levels of glyphosate at the genome level. |
− | }
| + | |
− | </style>
| + | |
− | <link rel="stylesheet" href="https://2018.igem.org/Team:Goettingen/css/main?action=raw&ctype=text/css">
| + | We have successfully isolated several mutant strains of <i>B. subtilis</i> that tolerate high amounts of glyphosate. All mutants had inactivated a gene encoding a transporter that is involved in uptake of an essential building block. Thus, our initial work led to the first glyphosate transport system! Currently, we engineer <i>B. subtilis</i> for the detection and inactivation of glyphosate. The microbial reporter system to detect glyphosate is based on labelled bacteria that tolerate different amounts of glyphosate and compete against each other for survival. We also engineer the bacteria to inactivate glyphosate using a bacterial enzyme that covalently modifies the herbicide. Our human practice section is dedicated to the raise of awareness for glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, our project will provide an updated view on the glyphosate controversy with new insights into the effects of the herbicide on the physiology of an environmentally relevant organism.</p> |
− | <script src="https://2018.igem.org/Team:Goettingen/JQuery331?action=raw&ctype=text/javascript" type="text/javascript">
| + | |
− | </script>
| + | |
− | <script src="https://2018.igem.org/Team:Goettingen/js/main?action=raw&ctype=text/javascript" type="text/javascript">
| + | <p style="font-weight: bold; font-size:1.1em">iGEM-Team Göttingen, Georg-August University Göttingen, Germany</p> |
− | </script>
| + | <table class="team-listing"> |
− | </head>
| + | <tr> |
− | <body>
| + | <th>Members:</th> |
− | <div class=wrapper>
| + | <td>Rica Bremenkamp, Malte Holmer, Jonas Jennrich, Veronika Lutz, Janek Meißner, Lisa Schulz, Robert Warneke, Marie Wensien, Dennis Wicke</td> |
− | <!-- Sidebar-Menü-->
| + | </tr> |
− | <div class="side_container">
| + | <tr> |
− | <nav class="side_menu">
| + | <th>Supervisors:</th> |
− | <a href="https://2018.igem.org/Team:Goettingen" class="side_items">Home</a>
| + | <td>Prof. Dr. Jörg Stülke, PD Dr. Fabian M. Commichau</td> |
− | <button class="dropdown_button side_items">Team</button>
| + | </tr> |
− | <div class="side_menu_dropdown_container">
| + | </table> |
− | <div class="side_menu_dropdown">
| + | </div> |
− | <a href="https://2018.igem.org/Team:Goettingen/Team">Team Members</a>
| + | </div> |
− | <a href="https://2018.igem.org/Team:Goettingen/Collaborations">Collaborations</a>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <button class="dropdown_button side_items">Project</button>
| + | |
− | <div class="side_menu_dropdown_container">
| + | |
− | <div class="side_menu_dropdown">
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Description">Description</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Design">Design</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Experiments">Experiments</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Notebook">Notebook</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/InterLab">InterLab</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Model">Model</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Results">Results</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Demonstrate">Demonstrate</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Improve">Improve</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Attributions">Attributions</a>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <button class="dropdown_button side_items">Parts</button>
| + | |
− | <div class="side_menu_dropdown_container">
| + | |
− | <div class="side_menu_dropdown">
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Parts">Parts Overview</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Basic_Part">Basic Parts</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Composite_Part">Composite Parts</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Part_Collection">Part Collection</a>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Safety" class="side_items">Safety</a>
| + | |
− | <button class="dropdown_button side_items">Human Practices</button>
| + | |
− | <div class="side_menu_dropdown_container">
| + | |
− | <div class="side_menu_dropdown">
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Human_Practices">Human Practices</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Public_Engagement">Education & Engagement</a>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <button class="dropdown_button side_items">Awards</button>
| + | |
− | <div class="side_menu_dropdown_container">
| + | |
− | <div class="side_menu_dropdown">
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Applied_Design">Applied Design</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Entrepreneurship">Entrepreneurship</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Measurement">Measurement</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Model">Model</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Plant">Plant</a>
| + | |
− | <a href="https://2018.igem.org/Team:Goettingen/Software">Software</a>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <a href="#" class="side_items">Judging Form</a>
| + | |
− | </nav>
| + | |
− | <div class="triangle_down">
| + | |
− | <div id="social_items_container">
| + | |
− | <a class="social_items" target="_blank" href="https://www.facebook.com/IGEM2018/">
| + | |
− | <img class="facebook" src="https://static.igem.org/mediawiki/2018/9/90/T--Goettingen--social-facebook.png" alt="Facebook-Button">
| + | |
− | </a>
| + | |
− | <a class="social_items" target="_blank" href="https://twitter.com/GoIgem">
| + | |
− | <img class="social_items" src="https://static.igem.org/mediawiki/2018/1/18/T--Goettingen--social-twitter.png" alt="Twitter-Button">
| + | |
− | </a>
| + | |
− | <a class= "social_items" target="_blank" href="https://www.instagram.com/igem_goettingen_2018/">
| + | |
− | <img class="instagram" src="https://static.igem.org/mediawiki/2018/c/c2/T--Goettingen--social-instagram.png" alt="Instagram-Button">
| + | |
− | </a>
| + | |
− | </div>
| + | |
− | <div class="triangle_down_inside"></div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <div class="content">
| + | |
− | <div id="content_textbox">
| + | |
− | <h2>Glyphosate on my plate?!<br/>A bacterial roundup solution to the glyphosate controversy</h2>
| + | |
− | <p>Feeding the steadily increasing world population is a major task that relies heavily on the use of fertilizers and herbicides. Glyphosate is the prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades, while still showing an upward trend in its usage rate. The Herbicide is a controversial substance, as its effects on human health and the environment still remains unsure, with some sources stating the suspicion for it to be carcinogenic. It also could pose a threat to biodiversity, but no real long-term studies have been carried out so far in this regard. Our team has set itself the goal to approach the glyphosate controversy through a microbial reporter system, using the well-known model organism <i>Bacillus subtilis</i>. This system should be able to detect and indicate the presence of glyphosate. During our studies we also aim to enhance the understanding of the effects of glyphosate on bacteria. We want to show how it is taken up into the bacterial cell and which pathways are affected by it. We will present our work on the development of glyphosate-resistant <i>B. subtilis</i> strains. Using these suppressor mutants, we could for the first time identify a protein that is capable of transporting glyphosate. The glyphosate-resistant strains could even provide the possibility to develop a glyphosate degradation pathway, based on the hypothesis that Bacillus might use glyphosate as its carbon source. Our human practice section is dedicated to the raise of awareness for Glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, this should provide an updated view on the Glyphosate controversy with renewed insights into the effects of the herbicide on organisms and possibly solution approaches with Glyphosate resistances.</p>
| + | |
− | <p style="font-weight: bold; font-size:1.1em">iGEM-Team Göttingen, Georg-August University Göttingen, Germany</p>
| + | |
− | <table>
| + | |
− | <tr>
| + | |
− | <th>Members:</th><td>Rica Bremenkamp, Malte Holmer, Jonas Jennrich, Veronika Lutz, Janek Meißner, Lisa Schulz, Robert Warneke, Marie Wensien </td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <th>Supervisors:</th><td>Dr. Fabian Commichau, Prof. Jörg Stülke</td>
| + | |
− | </tr>
| + | |
− | </table>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | <!-- Bereich für den Footer-->
| + | |
− | <div id="footer_container">
| + | |
− | <div class="triangle_up"></div>
| + | |
− | <div class="footer">
| + | |
− | <div class="footer_top">
| + | |
− | <div class="footer_sponsoren">
| + | |
− | <div id="sponsor_text">Sponsored by:</div>
| + | |
− | <img id="sartorius" src="https://static.igem.org/mediawiki/2018/d/db/T--Goettingen--Main-Page-sartorius.png" alt="Sartorius-Sponsor">
| + | |
− | <img id="goettingen" src="https://static.igem.org/mediawiki/2018/f/f6/T--Goettingen--Main-Page-goettingen.png" alt="Uni-Goettingen-Sponsor">
| + | |
− | <img id="gzmb" src="https://static.igem.org/mediawiki/2018/8/8c/T--Goettingen--Main-Page-gzmb.png" alt="GZMB-Sponsor">
| + | |
− | </div>
| + | |
− | <div id="footer_contact">
| + | |
− | <table>
| + | |
− | <tr><th>Contact</th></tr>
| + | |
− | <tr>
| + | |
− | <td>E-mail:</td><td><a href="mailto:igem2018@gwdg.de">igem2018@gwdg.de</a></td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td>Adress:</td><td>c/o iGEM 2018</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td></td><td>Department of General Microbiology</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td></td><td>Grisebachstraße </td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td></td><td>37077 Göttingen</td>
| + | |
− | </tr>
| + | |
− | <tr>
| + | |
− | <td></td><td>Germany</td>
| + | |
− | </tr>
| + | |
− | </table>
| + | |
− | </div>
| + | |
− | <div class="footer_halloffame">
| + | |
− | We are especially grateful to our numerous sponsors on <a href="https://de.gofundme.com/glyphosate-on-my-plate">gofundme,</a>who supported our project and made it possible.<br/>
| + | |
− | Every donor, who helped us to achieve our goals got a special place on our bacterial wall of fame and a handdrawn microbe to show our appreciation. A link to that wall can be found here:<br/>
| + | |
− | <p style="text-align: center; font-size: 1.3em"><a href="#">Bacterial Wall of Fame</a></p>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </div>
| + | |
− | </body>
| + | |
− | </html>
| + | |
Glyphosate on my plate?! Detection and inactivation of Glyphosate using the soil bacterium Bacillus subtilis
Feeding the steadily increasing world population is a major task that heavily relies on the use of fertilizers and herbicides. Glyphosate is the most prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades and its usage is still increasing. The herbicide has a bad reputation, as it is thought to be harmful to human health and its effect on the environment is controversially discussed. Several studies indicate that glyphosate could also pose a threat to the biodiversity on our planet. However, no real long-term studies have been carried out so far in this regard. The goal of our team is to approach the glyphosate controversy and to improve the knowledge about the impact of the herbicide on the physiology of a soil-dwelling organism. The Gram-positive model bacterium Bacillus subtilis is a soil-dwelling organism that perfectly suited to achieve our goal. Previously, it has been demonstrated that the growth of B. subtilis is strongly inhibited by glyphosate. At first, we have assessed the potential of B. subtilis to adapt to toxic levels of glyphosate at the genome level.
We have successfully isolated several mutant strains of B. subtilis that tolerate high amounts of glyphosate. All mutants had inactivated a gene encoding a transporter that is involved in uptake of an essential building block. Thus, our initial work led to the first glyphosate transport system! Currently, we engineer B. subtilis for the detection and inactivation of glyphosate. The microbial reporter system to detect glyphosate is based on labelled bacteria that tolerate different amounts of glyphosate and compete against each other for survival. We also engineer the bacteria to inactivate glyphosate using a bacterial enzyme that covalently modifies the herbicide. Our human practice section is dedicated to the raise of awareness for glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, our project will provide an updated view on the glyphosate controversy with new insights into the effects of the herbicide on the physiology of an environmentally relevant organism.
iGEM-Team Göttingen, Georg-August University Göttingen, Germany
Members: |
Rica Bremenkamp, Malte Holmer, Jonas Jennrich, Veronika Lutz, Janek Meißner, Lisa Schulz, Robert Warneke, Marie Wensien, Dennis Wicke |
Supervisors: |
Prof. Dr. Jörg Stülke, PD Dr. Fabian M. Commichau |