Line 79: | Line 79: | ||
<div class="sub"> | <div class="sub"> | ||
<ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div> | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div> | ||
+ | <ul> | ||
+ | <li><a href="#cds"><font size="-1">Biosynthesis of CdS</font></a></li> | ||
+ | <li><a href="# nitrogen"><font size="-1">Nitrogen fixation</font></a></li> | ||
+ | <li><a href="#device">Device</a></li> | ||
+ | </ul> | ||
+ | |||
<div class="sub"> | <div class="sub"> | ||
<ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></ul></li></div> | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></ul></li></div> | ||
Line 86: | Line 92: | ||
<ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></ul></li></div> | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></ul></li></div> | ||
<div class="sub"> | <div class="sub"> | ||
− | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/ | + | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Device">Device</a></li></div> |
</div> | </div> | ||
</div> | </div> | ||
Line 102: | Line 108: | ||
<ul> | <ul> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li> | ||
− | + | <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li> | |
</ul> | </ul> | ||
</li> | </li> | ||
Line 118: | Line 124: | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li> | ||
− | <li><a href="https://2018.igem.org/Team:Nanjing-China/ | + | <li><a href="https://2018.igem.org/Team:Nanjing-China/Device">Device</a></li> |
</ul> | </ul> | ||
</li> | </li> | ||
Line 135: | Line 141: | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></li> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li> | ||
+ | |||
</ul> | </ul> | ||
</li> | </li> | ||
Line 142: | Line 149: | ||
</div> | </div> | ||
<div class="contain" align="left"> | <div class="contain" align="left"> | ||
− | + | <div class="word" id="cds"> | |
− | + | <h2>Biosynthesis of CdS semiconductor</h2> | |
− | + | <p>To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into <em>E. coli</em> strain. After Cd2+ is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd2+ ions. At last when S2- ions are added into the media, <em>E. coli</em> cells form CdS semiconductor on the cell membrane because of the aggregation.</p></div> | |
− | + | ||
− | + | ||
− | < | + | |
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<div class="word"> | <div class="word"> | ||
<div id="design2" style="left:10%; width:80%;"> | <div id="design2" style="left:10%; width:80%;"> | ||
Line 179: | Line 167: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="word" id="nitrogen"> | ||
+ | <h2>Light-driven nitrogen fixation in E. coli cells</h2> | ||
+ | <p>To address the problem of electron transduction, CdS semiconductor act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to <u>a redox mediator methyl viologen (MV) </u>which then penetrates into <em>E. coli</em> cells and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.<br /> | ||
+ | As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a rather low cost. This design is of general applications as OmpA protein is only a surface display machinery for <em>E. coli</em>. <br /> | ||
+ | This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.</p></div> | ||
<div class="word"> | <div class="word"> | ||
− | + | <div id="design3" style=" left:10%; width:80%;"> | |
− | + | ||
− | + | ||
− | <div id="design3" style=" left:10%; width:80%;"> | + | |
<div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div> | <div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div> | ||
<div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div> | <div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div> | ||
Line 196: | Line 186: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="word" id="device"> | ||
+ | <h2>Device</h2> | ||
+ | <p>To apply our system to the real world, we also designed a <a href="https://2018.igem.org/Team:Nanjing-China/Device">device</a> consists of 3 modules: incubation module, illumination module and control module.</p></div> | ||
</div> | </div> | ||
<div class="footer"> | <div class="footer"> | ||
Line 229: | Line 222: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
<div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div> | <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div> | ||
</div> | </div> |
Revision as of 10:12, 22 September 2018
Biosynthesis of CdS semiconductor
To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into E. coli strain. After Cd2+ is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd2+ ions. At last when S2- ions are added into the media, E. coli cells form CdS semiconductor on the cell membrane because of the aggregation.
Light-driven nitrogen fixation in E. coli cells
To address the problem of electron transduction, CdS semiconductor act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to a redox mediator methyl viologen (MV) which then penetrates into E. coli cells and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.
As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a rather low cost. This design is of general applications as OmpA protein is only a surface display machinery for E. coli.
This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.
Device
To apply our system to the real world, we also designed a device consists of 3 modules: incubation module, illumination module and control module.