Line 139: | Line 139: | ||
<div class="contain"> | <div class="contain"> | ||
<div class="word"> | <div class="word"> | ||
− | <div style="position:absolute; top:- | + | <div style="position:absolute; top:-70px; z-index:3;"> |
<img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--PROJECT-b.jpg" width="50%" /></div> | <img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--PROJECT-b.jpg" width="50%" /></div> | ||
− | <div class="word-1" style="height: | + | <div class="word-1" style="height:10px;"></div> |
</div> | </div> | ||
<div class="word" id="definition"> | <div class="word" id="definition"> |
Revision as of 07:31, 7 October 2018
The definition of nitrogen fixation
•What is nitrogen fixation?
Nitrogen → ammonia (NH3) or other molecules available to living organisms.
What is nitrogen fixation for?
-global food supply
-reduce the use of chemical nitrogen fertilizers
Nitrogen fixation is essential for life.
The methods of nitrogem fixation
Nitrogen cycle
•Nitrogen fixation:
—N2 → plants by bacteria
•Nitrification:
—ammonium → nitrite → nitrate
—Absorbed by plants
•Denitrification:
—Release N to atmosphere
Haber-Bosch process
N2 + 3H2 → 2NH3(ΔH° = −91.8 kJ)
High temperature
High pressure
Need too much energy
Biological nitrogen fixation
Mild reaction conditions
Relatively inexpensive
High efficiency
Environmentally friendly
The choose of nitrogenase
Molybdenum
(MoFe)-dependent
Vanadium
(VFe)-dependent
Iron-only
(FeFe)-dependent
MoFe has been studied extensively
Nitrogen Fixation Gene Cluster
The minimal nif genes required for nitrogen fixation.
General principle of biological nitrogen fixation
01 Hydrolysis of ATP | 03 MoFe protein forming complexes with low-potential donor | |
Chemical energy (ATP)→Solar energy |
||
02 Electron transfer | 04 Reduce N2 to NH3 |
01 Receive light signals | 03 MoFe protein forming complexes with low-potential donor | |
02 Electron transfer | 04 Reduce N2 to NH3 |
The characteristics of whole-cell
The property and advantage of whole-cells
•Fast proliferation to enable large-scale application
•Good portability to permit on-site monitoring
•Inexpensive and easy to preserve
• Intracellular cascade reactions to amplify signals
• Excellent specificity, sensitivity and stability