Difference between revisions of "Team:Nanjing-China/Results"

Line 74: Line 74:
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
<div class="sub">
 
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div>
 
<div class="sub">
 
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></ul></li></div>
 
 
   <div class="sub">
 
   <div class="sub">
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
  <div class="sub">
+
        <ul>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></ul></li></div>
+
    <li><a href="#cds">CdS</a></li>
  <div class="sub">
+
  <li><a href="#nit"><font size="-1">Nitrogen fixation</font></a></li>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Improvement">Improvement</a></ul></li></div>
+
  </ul>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="container" align="center">
 
<div class="container" align="center">
  <div id="menu">
+
<div id="menu">
    <ul>
+
  <li><a href="https://2018.igem.org/Team:Nanjing-China">HOME</a>
+
    <ul>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China">Introduction</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
+
</ul>
+
    </li>
+
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
+
 
         <ul>
 
         <ul>
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
+
  <li><a href="https://2018.igem.org/Team:Nanjing-China">People</a>
</ul>
+
            </li>
+
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">JUDGE</a>
+
 
     <ul>
 
     <ul>
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">Bronze</a></li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Sliver">Sliver</a></li>
+
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Gold">Gold</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
 +
             <li><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges">For_Judges</a></li>
 
</ul>
 
</ul>
      </li>
+
    </li>
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">PROJECT</a>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">PROJECT</a>
 
     <ul>
 
     <ul>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></li>
 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Device">Device</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
</ul>
 
</ul>
 
         </li>
 
         </li>
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">TEAM</a>
+
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
    <ul>
+
        <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Introduction</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
 
</ul>
 
</ul>
     </li>
+
            </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">OTHERS</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></a>
 +
      </li>
 +
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">Practices</a>
 
     <ul>
 
     <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">HP</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
+
 
</ul>
 
</ul>
 
     </li>
 
     </li>
 +
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></li>
 
       </ul>
 
       </ul>
 
   </div>
 
   </div>
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" >
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" >
 
</div>  
 
</div>  
     <div class="contain" align="left">
+
     <div class="contain">
        <div class="word">
+
    <div class="word">
<p align="left"><font size="+2">We first verified the activity of the nitrogen-fixing gene cluster  promoter<em> Pnif </em>in E. coli. The  expression of surface display proteins and nitrogenases in E. coli was then  determined by SDS electrophoresis. Finally, the nitrogenase activity was  detected by acetylene reduction assay, colorimetric assay and fluorescence assay  using o-dialdehyde.</font></p>
+
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
<p align="left">In order to ensure the expression of this gene cluster in E coli,  first we verified the transcriptional activity of <em>Pnif</em> promoter in E coli cells by conducting control experiments. In  the test group, we replaced the native T5 promoter on pQE80L vector with <em>Pnif</em>, connected it to <em>Dronpa</em> fluorescent protein gene and  transformed the new vectors to E.coli cells. In the control group, pQE80L  vectors with T5 promoter and <em>Dronpa</em> gene were transformed to E coli cells. The comparable level of fluorescence  intensity of the two groups indicated that <em>Pnif</em> promoter is transcriptional active in E coli cells.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/d/da/T--Nanjing-China--PROJECT-r.jpg" width="50%" /></div>
<p align="left">Transfer PQE80L with <em>Pnif</em> and<em> Dronpa</em> into E.coli BL21. Pick up the plasmid from the contracted  E.coli, dual-enzyme digest and make the DNA elestrophoresis, All the cannel are  from the contracted E.coli. Each one has two sequence and the shorter one is  about 700bp, which proves that the plasmid with <em>Pnif </em>and <em>dro </em>has been  transferred to the E.coli. </p>
+
    <div class="word-1" style="height:20px;"></div>
        <div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/3/3d/T--Nanjing-China--result-1.png" width="70%" />
+
    </div>
        <p><font size="-1">Figure1. the DNA electrophoresis of Pnif+dro from contracted E.coli. All the cannel are from the contracted E.coli</font></p></div>
+
<div class="word" id="cds">
        </div>
+
         <h2>Biosynthesis of CdS semiconductor</h2>
        <div class="word">
+
         <div class="word-1">
         <p>Fluorescence and light absorption measurements reflect the change in Pnif promoter activity over time. The red line in the figure represents the change in fluorescence intensity in the presence of the Pnif promoter, while the black line represents the change in fluorescence intensity at the T5 promoter of the plasmid. The activity of the Pnif promoter reached a maximum around 11 hours and remained essentially unchanged thereafter. This result provides a reference incubation time for our further assays.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" width="100%" />
         <div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/f/fc/T--Nanjing-China--result-2.png" width="70%" />
+
    <p>TEM-EDX analysis of CdS semiconductor. a) TEM images of biosynthesized CdS semiconductor on the surface of an engineered E. coli cell. b) Elemental analysis using EDX system, the result show that the semiconductor on cell surface is mainly composed of cadmium and sulfide.</p>
        <p><font size="-1">Figure2. The time curve of nifB promoter activity. The red line in the figure represents the change in fluorescence intensity in the presence of the Pnif promoter, while the black line represents the change in fluorescence intensity at the T5 promoter of the plasmid. The activity of the Pnif promoter reached a maximum around 11 hours and remained essentially unchanged thereafter. This result provides a reference incubation time for our further assays.</font></p></div>
+
    </div>
        </div>
+
    <div class="word-1">
        <div class="word">
+
    <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Nanjing-China--toxicity-1.jpg" width="70%" />
<p>Using a similar method, we detected the activity of the Pnif at different ammonium concentrations. The results show that Pnif is not sensitive to ammonium.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/3/3e/T--Nanjing-China--toxicity-2.jpg" width="70%" />
        <div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/7/77/T--Nanjing-China--result-3.png" width="70%" />
+
<p>Toxicity test was conducted to determine the maximum amount of Cd2+ that is agreeable for E. coli growth. Compared with the control group that doesn’t contain surface-display gene, our constructed E. coli strain is more sensitive to Cd2+, and its growth will be restricted When the Cd2+ concentration is above 150μM. So we select 100μM as the final Cd2+ concentration for our further assays.</p>
        <p><font size="-1">Fiture3. Activity changes of Pnif promoter at different ammonium concentrations. </font></p></div>
+
    </div>
        </div>
+
    <div class="word-1">
        <div class="word">
+
    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" width="70%" />
  <p align="left">Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)  was used to determine whether the two groups of genes were transferred and  expressed specific proteins. SDS-PAGE can separate proteins into several bands  according to the different migration rates produced by different molecular masses.  Three lanes on the left are proteins from E.coli cultured in non-nitrogen-fixation  condition with O2. While three lanes on the right are proteins from  E.coli cultured in nitrogen-fixation condition without O2. On the  last lane, we can see the band of <em>OmpA-PbrR</em>,  which is approximately 44kDa, beside the first arrow and the band <em>hesA,</em> which is a 24kDa nitrogenase  protein, beside the second arrow.</p>
+
    <p>The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). These data confirmed the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of the cells.</p>
<p>&nbsp;</p>
+
    </div>
        <div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/e/e7/T--Nanjing-China--result-4.png" width="70%" />
+
    <div class="word-1">
        <p><font size="-1">Figure4. SDS of the protein. The protein with “1” is from the E.coli cultured in no nitrogen-fixed condition. The protein with “2” is from the E.coli cultured in nitrogen-fixed condition.On the last lane, we can see the band of OmpA-PbrR, which is approximately 44kDa, beside the first arrow and the band hesA, which is a 24kDa nitrogenase protein, beside the second arrow.</font></p></div>
+
    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" width="70%" />
        </div>
+
    <p>We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap energy of these CdS semiconductor and the photocatalytic capability for the biological precipitation of CdS semiconductor on the outer membranes of the bacterial cells. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, labsorption = 424 nm), confirming the photocatalytic ability of the in situ biosynthesized CdS semiconductor.</p>
          <div class="word">
+
    </div>
  <p align="left">Nitrogenase can only reduce nitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. P and N represent E. coli containing the surface display gene and the nitrogen fixation gene, respectively, and the two groups labeled with AR are grown under oxygen-free nitrogen fixation conditions. Through the experimental results, we can conclude that under nitrogen fixation conditions, our constructed E. coli can exhibit a certain nitrogenase activity.</p>
+
    </div>
        <div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/9/9a/T--Nanjing-China--result-5.png" width="70%" />
+
    <div class="word" id="nit">
        <p><font size="-1">Figure5. The reduction of acetylene. P and N represent E. coli containing the surface display gene and the nitrogen fixation gene, respectively, and the two groups labeled with AR are grown under oxygen-free nitrogen fixation conditions.</font></p></div>
+
    <h2>Light-driven nitrogen fixation in E. coli cells</h2>
        </div>
+
         <div class="word-1">
        <div class="word">
+
    <img src="https://static.igem.org/mediawiki/2018/c/cf/T--Nanjing-China--QPCR1.jpg" width="70%" />
  <p align="left">The amount of NH<Sub>4</Sub><sup>+</sup> produced by the nitrogenase was measured using a colorimetric assay kit. After the reaction under assay conditions, the absorption peak at 570 nm is proportional to the amount of NH4+ in the reaction solution.</br>
+
    <img src="https://static.igem.org/mediawiki/2018/d/dc/T--Nanjing-China--QPCR2.jpg" width="70%" />
First, we use the NH4Cl standard solution provided by the kit to make a standard curve. As shown in Figure a, the relationship between the absorption intensity of OD570 and the NH4+ concentration is calculated according to the formula obtained from the standard curve.</br>
+
<p>To verify the expression of nitrogenase gene, we conducted Real-time Quantitative PCR(QPCR) to detect the transcription level of nif gene cluster in engineered E. coli, using 16S DNA as an internal reference. The result provided the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the ideal expression ratio in Paenibacillus CR1 and model the transcription, we plan to optimize the nif gene cluster by adding promoters or altering the position of genes.<br/>
Figure b is the amount of NH<Sub>4</Sub><sup>+</sup> produced by E. coli under different culture conditions after conversion according to the standard curve. Four groups of E. coli were determined under nitrogen-free nitrogen fixation conditions. Approximately 2.71 nmol of NH<Sub>4</Sub><sup>+</sup> is produced per 1 million E. coli
+
Nitrogenase can not only reduce dinitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. On the basis of these results, NH3 production by our engineered E. coli cell–CdS hybrid system is directly related to the biosynthesized CdS semiconductors as well as illumination and anaerobic conditions.</p>
</p>
+
    </div>
         <div class="word-note"><div class="word-2" align="center"><img src="https://static.igem.org/mediawiki/2018/3/33/T--Nanjing-China--result-6-standard.png" width="95%" />
+
 
        <p><font size="-1">Figure6a.standard curve of the Ammonium Chloride standard NH4Cl solution</font></p></div>
+
      </div>
        <div class="word-2" align="center"><img src="https://static.igem.org/mediawiki/2018/5/5b/T--Nanjing-China--result-6.png" width="95%" /><p><font size="-1">Figure6b. the OD570 and OD600 of the ompa-pbrr, nif and ompa-pbrr+nif(light/dark) in an oxygen-free environment</font></p></div>
+
        <p><font size="-1">In Figure a, the relationship between the absorption intensity of OD570 and the NH4+ concentration is calculated according to the formula obtained from the standard curve.
+
Figure b is the amount of NH4+ produced by E. coli under different culture conditions after conversion according to the standard curve. Four groups of E. coli were determined under nitrogen-free nitrogen fixation conditions. Approximately 2.71 nmol of NH4+ is produced per 1 million E. coli
+
</font></p>
+
        </div>
+
        </div>
+
 
</div>
 
</div>
 
  <div class="footer">
 
  <div class="footer">

Revision as of 07:37, 10 October 2018

Nanjing-China2018

Biosynthesis of CdS semiconductor

TEM-EDX analysis of CdS semiconductor. a) TEM images of biosynthesized CdS semiconductor on the surface of an engineered E. coli cell. b) Elemental analysis using EDX system, the result show that the semiconductor on cell surface is mainly composed of cadmium and sulfide.

Toxicity test was conducted to determine the maximum amount of Cd2+ that is agreeable for E. coli growth. Compared with the control group that doesn’t contain surface-display gene, our constructed E. coli strain is more sensitive to Cd2+, and its growth will be restricted When the Cd2+ concentration is above 150μM. So we select 100μM as the final Cd2+ concentration for our further assays.

The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). These data confirmed the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of the cells.

We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap energy of these CdS semiconductor and the photocatalytic capability for the biological precipitation of CdS semiconductor on the outer membranes of the bacterial cells. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, labsorption = 424 nm), confirming the photocatalytic ability of the in situ biosynthesized CdS semiconductor.

Light-driven nitrogen fixation in E. coli cells

To verify the expression of nitrogenase gene, we conducted Real-time Quantitative PCR(QPCR) to detect the transcription level of nif gene cluster in engineered E. coli, using 16S DNA as an internal reference. The result provided the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the ideal expression ratio in Paenibacillus CR1 and model the transcription, we plan to optimize the nif gene cluster by adding promoters or altering the position of genes.
Nitrogenase can not only reduce dinitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. On the basis of these results, NH3 production by our engineered E. coli cell–CdS hybrid system is directly related to the biosynthesized CdS semiconductors as well as illumination and anaerobic conditions.