Line 36: | Line 36: | ||
position:fixed; | position:fixed; | ||
left:5px; | left:5px; | ||
− | top: | + | top:80%; |
− | width: | + | width:120px; |
− | height: | + | height:90px; |
line-height:100px; | line-height:100px; | ||
z-index:6; | z-index:6; | ||
Line 45: | Line 45: | ||
background-color:rgba(255,0,0,0.5); | background-color:rgba(255,0,0,0.5); | ||
border:rgba(153,153,153,1) 3px groove; | border:rgba(153,153,153,1) 3px groove; | ||
− | border-radius:8px;; | + | border-radius:8px; |
+ | display:none; | ||
} | } | ||
</style> | </style> | ||
Line 87: | Line 88: | ||
{ | { | ||
Spry.Effect.DoGrow(targetElement, {duration: duration, from: from, to: to, toggle: toggle, referHeight: referHeight, growCenter: growFromCenter}); | Spry.Effect.DoGrow(targetElement, {duration: duration, from: from, to: to, toggle: toggle, referHeight: referHeight, growCenter: growFromCenter}); | ||
+ | } | ||
+ | function MM_showHideLayers() { //v9.0 | ||
+ | var i,p,v,obj,args=MM_showHideLayers.arguments; | ||
+ | for (i=0; i<(args.length-2); i+=3) | ||
+ | with (document) if (getElementById && ((obj=getElementById(args[i]))!=null)) { v=args[i+2]; | ||
+ | if (obj.style) { obj=obj.style; v=(v=='show')?'visible':(v=='hide')?'hidden':v; } | ||
+ | obj.visibility=v; } | ||
} | } | ||
</script> | </script> | ||
Line 179: | Line 187: | ||
<p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> | <p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> | ||
</div> | </div> | ||
− | <div class="word" id="i-menu" | + | <div align="center" class="word" id="i-menu" onfocus="MM_showHideLayers('for_judge','','show')" > |
<div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" height="150px" /></a></ul></div> | <div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" height="150px" /></a></ul></div> | ||
<div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China/Background">Project</a></ul></div> | <div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China/Background">Project</a></ul></div> |
Revision as of 10:14, 10 October 2018
for_judge
Introduction
Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to NH3(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.