Line 38: | Line 38: | ||
top:80%; | top:80%; | ||
width:120px; | width:120px; | ||
− | height: | + | height:70px; |
− | line-height: | + | line-height:70px; |
z-index:6; | z-index:6; | ||
padding:2px; | padding:2px; | ||
Line 46: | Line 46: | ||
border:rgba(153,153,153,1) 3px groove; | border:rgba(153,153,153,1) 3px groove; | ||
border-radius:8px; | border-radius:8px; | ||
+ | visibility:hidden; | ||
+ | display:none; | ||
} | } | ||
</style> | </style> | ||
Line 138: | Line 140: | ||
</div> | </div> | ||
</div> | </div> | ||
− | <div id="for_judge">for_judge</div> | + | <div id="for_judge" align="center"><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges">for_judge</a></div> |
<div class="container" align="center"> | <div class="container" align="center"> | ||
<div id="menu" > | <div id="menu" > | ||
Line 186: | Line 188: | ||
<p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> | <p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> | ||
</div> | </div> | ||
− | <div align="center" class="word" id="i-menu" | + | <div align="center" class="word" id="i-menu" onfocus="MM_changeProp('for_judge','','display','runin','DIV')" > |
<div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" height="150px" /></a></ul></div> | <div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China"><img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" height="150px" /></a></ul></div> | ||
<div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China/Background">Project</a></ul></div> | <div class="i-menu-button"><ul><a href="https://2018.igem.org/Team:Nanjing-China/Background">Project</a></ul></div> |
Revision as of 10:21, 10 October 2018
Introduction
Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to NH3(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.