Difference between revisions of "Team:Nanjing-China/Demonstrate"

Line 3: Line 3:
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<title>Nanjing-China2018</title>
 
<title>Nanjing-China2018</title>
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:1?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:4?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
#HQ_page table p{ font-size:85%;}
 
 
#HQ_page .word-note p{ text-align:center; }
 
#HQ_page .word-note p{ text-align:center; }
 
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 71: Line 69:
 
                 $("#loader").fadeOut("slow");
 
                 $("#loader").fadeOut("slow");
 
             })
 
             })
 
 
</script>  
 
</script>  
 
<div id="d">
 
<div id="d">
<img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" id="Image1" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" />
+
<img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" />
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
      <div class="sub">
+
  <div class="sub">
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li></ul></div>
+
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
      <ul>
+
        <ul>
      <li><a href="#overview">Overview</a></li>
+
    <li><a href="#cds">CdS</a></li>
      <li><a href="#cds">CdS</a></li>
+
  <li><a href="#nit"><font size="-1">Nitrogen fixation</font></a></li>
      <li><a href="#nit"><font size="-1">Nitrogen fixation</font></a></li>
+
  </ul>
      <li><a href="#device">Device</a></li>
+
      </ul>
+
 
</div>
 
</div>
 
</div>
 
</div>
Line 93: Line 88:
 
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
 
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
 
     <ul>
 
     <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">TEAM</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
Line 114: Line 109:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
  </ul>
+
</ul>
          </li>
+
            </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a></a>
 
       </li>
 
       </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
Line 127: Line 122:
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
  </div>
+
  </div>
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)"></div>  
+
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
  <div class="contain">
+
</div>  
 +
    <div class="contain">
 
     <div class="word">
 
     <div class="word">
 
       <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
 
       <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
     <img src="https://static.igem.org/mediawiki/2018/4/4a/T--Nanjing-China--PROJECT-dm.png" width="45%" /></div>
+
     <img src="https://static.igem.org/mediawiki/2018/d/da/T--Nanjing-China--PROJECT-r.jpg" width="50%" /></div>
 +
    <div class="word-1" style="height:20px;"></div>
 
     </div>
 
     </div>
    <div class="word" id="overview">
+
<div class="word" id="cds">
      <h2>Overview</h2>
+
        <h2>Biosynthesis of CdS semiconductor</h2>
        <p>This year, we found  an economic, efficient and environmental-friendly way to utilize nitrogen in  the air. Our design consists of three parts: biosynthesis of CdS semiconductor, light-driven  nitrogen fixation and reaction device. All three parts have gone  through in-depth examination and successfully work out under real conditions.<br />
+
    <img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" width="100%" />
         The following list exhibits our key  achievements in this project.<br />
+
    <p>TEM-EDX analysis of CdS semiconductor. a) TEM images of biosynthesized CdS semiconductor on the surface of an engineered E. coli cell. b) Elemental analysis using EDX system, the result show that the semiconductor on cell surface is mainly composed of cadmium and sulfide.</p>
        Constructed and  tested engineered <em>E. coli</em> which express nitrogenase and OmpA-PbrR. <br />
+
    <p>&nbsp;</p>
        Constructed and  tested light-driven system based on OmpA-PbrR protein.<br />
+
    <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Nanjing-China--toxicity-1.jpg" width="70%" />
        Achieved  light-driven nitrogen fixation.<br />
+
         <div class="word-background-block" style="height:10px;"></div>
        Designed a reaction  device that cater for our light-driven nitrogen fixation reaction.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/3/3e/T--Nanjing-China--toxicity-2.jpg" width="70%" />
 +
<p>Toxicity test was conducted to determine the maximum amount of Cd<sup>2+</sup> that is agreeable for E. coli growth. Compared with the control group that doesn’t contain surface-display gene, our constructed E. coli strain is more sensitive to Cd<sup>2+</sup>, and its growth will be restricted When the Cd<sup>2+</sup> concentration is above 150μM. So we select 100μM as the final Cd<sup>2+</sup> concentration for our further assays.</p>
 +
<p>&nbsp;</p>
 +
    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" width="70%" />
 +
    <p>The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). These data confirmed the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of the cells.</p>
 +
<p>&nbsp;</p>
 +
    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" width="70%" />
 +
    <p>We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap energy of these CdS semiconductor and the photocatalytic capability for the biological precipitation of CdS semiconductor on the outer membranes of the bacterial cells. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, labsorption = 424 nm), confirming the photocatalytic ability of the in situ biosynthesized CdS semiconductor.</p>
 +
<p>&nbsp;</p>
 
     </div>
 
     </div>
<div class="word" id="cds">    
+
    <div class="word" id="nit">
      <h3>Biosynthesis  of CdS semiconductor</h3>
+
    <h2>Light-driven nitrogen fixation in E. coli cells</h2>
      <p>One key element  of light-driven system in our design is CdS semiconductor precipitated by the OmpA-PbrR  fused protein. We used TEM-EDX analysis to characterize CdS semiconductor  precipitated on E. coli cell. We also determined the maximum concentration of  Cd2+ appropriate for strain growth, as well as the amount of CdS  that can be precipitated on cell surface.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/c/cf/T--Nanjing-China--QPCR1.jpg" width="40%" />
      <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" name="TEX-start" width="90%" /></div>
+
    <div class="word-background-block" style="width:20px;"></div>
      <div class="word-background-block" style="height:30px;"></div>
+
    <img src="https://static.igem.org/mediawiki/2018/d/dc/T--Nanjing-China--QPCR2.jpg" width="40%" />
      <div class="word-note">
+
<p>To verify the expression of nitrogenase gene, we conducted Real-time Quantitative PCR(QPCR) to detect the transcription level of nif gene cluster in engineered E. coli, using 16S DNA as an internal reference. The result provided the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the ideal expression ratio in Paenibacillus CR1 and model the transcription, we plan to optimize the nif gene cluster by adding promoters or altering the position of genes.<br/>
        <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Nanjing-China--toxicity-1.jpg" name="tox1" width="40%" /></div>
+
Nitrogenase can not only reduce dinitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. On the basis of these results, NH<sub>3</sub> production by our engineered E. coli cell–CdS hybrid system is directly related to the biosynthesized CdS semiconductors as well as illumination and anaerobic conditions.</p>
        <div class="word-background-block" style="width:20px;"></div>
+
      </div>
      <div class="word-note">
+
</div>
<img src="https://static.igem.org/mediawiki/2018/3/3e/T--Nanjing-China--toxicity-2.jpg" name="tox2" width="40%" />
+
        </div>
+
        <div class="word-background-block" style="height:30px;"></div>
+
        <div class="word-note">
+
        <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" name="ICP-MS" width="70%" /></div>
+
        <div class="word-background-block" style="height:30px;"></div>
+
        <div class="word-note">
+
        <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" name="UV" width="70%"  /></div>
+
    </div>
+
        <div class="word" id="nit">
+
      <h3>Light-driven  nitrogen fixation</h3>
+
        <p>CdS  semiconductor generate excited electrons under illumination which are then  passed to nitrogenase for nitrogen fixation. We introduce nitrogenase to <em>E.coli</em> to enable it to reduce dinitrogen to ammonia. We conducted QPCR to detect  relative transcriptional level of each <em>nif</em> gene. We also plan to optimize the structure of <em>nif </em>gene operon after modeling. Using acetylene reduce assay, we then  verify the activity of nitrogenase in our system.</p>
+
      <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/c/cf/T--Nanjing-China--QPCR1.jpg" width="40%" />
+
      <div class="word-background-block" style="width:20px;"></div>
+
      <img src="https://static.igem.org/mediawiki/2018/d/dc/T--Nanjing-China--QPCR2.jpg" width="40%" /></div>
+
        </div>
+
        <div class="word" id="device">
+
      <h3>Reaction  device</h3>
+
        <p>We designed a light-driven microbe reaction  device to apply our system to practical use. After a few test, we proved our  device to be quite practical. <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">(see device for more details)</a></p>
+
        <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/c/c2/T--Nanjing-China--device-whole.jpg" width="100%" /></div>
+
    </div>
+
  </div>
+
 
  <div class="footer">
 
  <div class="footer">
 
     <div align="center">
 
     <div align="center">
Line 206: Line 189:
 
         </div>
 
         </div>
 
       </div>
 
       </div>
    </div>
+
      </div>
 
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
   </div>
 
   </div>

Revision as of 11:43, 11 October 2018

Nanjing-China2018

Biosynthesis of CdS semiconductor

TEM-EDX analysis of CdS semiconductor. a) TEM images of biosynthesized CdS semiconductor on the surface of an engineered E. coli cell. b) Elemental analysis using EDX system, the result show that the semiconductor on cell surface is mainly composed of cadmium and sulfide.

 

Toxicity test was conducted to determine the maximum amount of Cd2+ that is agreeable for E. coli growth. Compared with the control group that doesn’t contain surface-display gene, our constructed E. coli strain is more sensitive to Cd2+, and its growth will be restricted When the Cd2+ concentration is above 150μM. So we select 100μM as the final Cd2+ concentration for our further assays.

 

The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). These data confirmed the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of the cells.

 

We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap energy of these CdS semiconductor and the photocatalytic capability for the biological precipitation of CdS semiconductor on the outer membranes of the bacterial cells. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, labsorption = 424 nm), confirming the photocatalytic ability of the in situ biosynthesized CdS semiconductor.

 

Light-driven nitrogen fixation in E. coli cells

To verify the expression of nitrogenase gene, we conducted Real-time Quantitative PCR(QPCR) to detect the transcription level of nif gene cluster in engineered E. coli, using 16S DNA as an internal reference. The result provided the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the ideal expression ratio in Paenibacillus CR1 and model the transcription, we plan to optimize the nif gene cluster by adding promoters or altering the position of genes.
Nitrogenase can not only reduce dinitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. On the basis of these results, NH3 production by our engineered E. coli cell–CdS hybrid system is directly related to the biosynthesized CdS semiconductors as well as illumination and anaerobic conditions.