Line 79: | Line 79: | ||
<div class="sub"> | <div class="sub"> | ||
<ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div> | <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div> | ||
− | + | <ul> | |
− | + | <li><a href="#cds">CdS</a></li> | |
− | + | <li><a href="#nitrogen"><font size="-1">Nitrogen fixation</font></a></li> | |
− | + | <li><a href="#device">Device</a></li> | |
− | + | </ul> | |
− | + | ||
− | + | ||
− | + | ||
</div> | </div> | ||
</div> | </div> | ||
</div> | </div> | ||
<div class="container" align="center"> | <div class="container" align="center"> | ||
− | <div id="menu"> | + | <div id="menu" > |
<ul> | <ul> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a> | <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a> | ||
<ul> | <ul> | ||
− | <li><a href="https://2018.igem.org/Team:Nanjing-China/Team"> | + | <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li> |
<li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li> | ||
Line 123: | Line 120: | ||
<ul> | <ul> | ||
<li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li> | ||
− | <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety"> | + | <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">SAFETY</a></li> |
<li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li> | <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li> | ||
</ul> | </ul> | ||
Line 130: | Line 127: | ||
</ul> | </ul> | ||
</div> | </div> | ||
− | <div class="header"><img src="https://static.igem.org/mediawiki/2018/ | + | <div class="header"><img src="https://static.igem.org/mediawiki/2018/f/f3/T--Nanjing-China--title-1-1.png" width="100%" onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)" > |
− | </div> | + | </div> |
− | <div class="contain" | + | <div class="contain"> |
− | + | <div class="word"> | |
− | < | + | <div style="position:absolute; top:-90px; z-index:3; left:-10px;"> |
+ | <img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--PROJECT-d.jpg" width="50%" /></div> | ||
+ | <div class="word-1" style="height:20px;"></div> | ||
</div> | </div> | ||
− | <div class="word" | + | <div class="word" id="cds"> |
− | + | <h2>Biosynthesis of CdS semiconductor</h2> | |
− | < | + | <p>To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into <em>E. coli</em> strain. After Cd<sup>2+</sup> is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd<sup>2+</sup> ions. At last when S<sup>2-</sup> ions are added into the media, <em>E. coli</em> cells form CdS semiconductor on the cell membrane because of the aggregation.</p></div> |
− | < | + | |
− | + | ||
− | + | ||
− | < | + | |
− | < | + | |
− | + | ||
− | + | ||
− | < | + | |
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
− | + | ||
<div class="word"> | <div class="word"> | ||
<div id="design2" style="left:10%; width:80%;"> | <div id="design2" style="left:10%; width:80%;"> | ||
Line 166: | Line 149: | ||
<div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div> | <div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div> | ||
<div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div> | <div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div> | ||
− | <div class="play" onclick="MM_timelinePlay('Timeline2')">play</div> | + | <div class="play" id="button" onclick="MM_timelinePlay('Timeline2')"><ul>play</ul></div> |
− | <div class="stop" onclick="MM_timelineStop('Timeline2')">stop</div> | + | <div class="stop" id="button" onclick="MM_timelineStop('Timeline2')"><ul>stop</ul></div> |
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="word" id="nitrogen"> | ||
+ | <h2>Light-driven nitrogen fixation in E. coli cells</h2> | ||
+ | <p>To address the problem of electron transduction, CdS semiconductor act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to <u>a redox mediator methyl viologen (MV) </u>which then penetrates into <em>E. coli</em> cells and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.<br /> | ||
+ | As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a rather low cost. This design is of general applications as OmpA protein is only a surface display machinery for <em>E. coli</em>. <br /> | ||
+ | This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.</p> | ||
+ | </div> | ||
<div class="word"> | <div class="word"> | ||
− | + | <div id="design3" style=" left:10%; width:80%;"> | |
− | + | ||
− | + | ||
− | <div id="design3" style=" left:10%; width:80%;"> | + | |
<div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div> | <div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div> | ||
<div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div> | <div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div> | ||
Line 183: | Line 169: | ||
<div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div> | <div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div> | ||
<div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div> | <div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div> | ||
− | <div class="play" onclick="MM_timelinePlay('Timeline3')">play</div> | + | <div class="play" id="button" onclick="MM_timelinePlay('Timeline3')"><ul>play</ul></div> |
− | <div class="stop" onclick="MM_timelineStop('Timeline3')">stop</div> | + | <div class="stop" id="button" onclick="MM_timelineStop('Timeline3')"><ul>stop</ul></div> |
</div> | </div> | ||
</div> | </div> | ||
+ | <div class="word" id="device"> | ||
+ | <h2>Device</h2> | ||
+ | <p>To apply our system to the real world, we also designed a <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">device</a> consists of 3 modules: incubation module, illumination module and control module.</p></div> | ||
</div> | </div> | ||
<div class="footer"> | <div class="footer"> | ||
Line 220: | Line 209: | ||
</div> | </div> | ||
</div> | </div> | ||
− | + | </div> | |
<div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div> | <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div> | ||
</div> | </div> |
Revision as of 13:16, 11 October 2018
Biosynthesis of CdS semiconductor
To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into E. coli strain. After Cd2+ is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd2+ ions. At last when S2- ions are added into the media, E. coli cells form CdS semiconductor on the cell membrane because of the aggregation.
- play
- stop
Light-driven nitrogen fixation in E. coli cells
To address the problem of electron transduction, CdS semiconductor act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to a redox mediator methyl viologen (MV) which then penetrates into E. coli cells and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.
As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a rather low cost. This design is of general applications as OmpA protein is only a surface display machinery for E. coli.
This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.
- play
- stop
Device
To apply our system to the real world, we also designed a device consists of 3 modules: incubation module, illumination module and control module.