Difference between revisions of "Team:Nanjing-China/Design"

Line 7: Line 7:
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
 
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 80: Line 79:
 
<div class="sub">
 
<div class="sub">
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div>
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div>
<div class="sub">
+
            <ul>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></ul></li></div>
+
    <li><a href="#cds">CdS</a></li>
  <div class="sub">
+
  <li><a href="#nitrogen"><font size="-1">Nitrogen fixation</font></a></li>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
+
    <li><a href="#device">Device</a></li>
  <div class="sub">
+
  </ul>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></ul></li></div>
+
  <div class="sub">
+
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Improvement">Improvement</a></ul></li></div>
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="container" align="center">
 
<div class="container" align="center">
<div id="menu">
+
<div id="menu" >
 
         <ul>
 
         <ul>
 
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
 
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
 
     <ul>
 
     <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">TEAM</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
Line 132: Line 128:
 
   </div>
 
   </div>
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
</div>
+
</div>
     <div class="contain" align="left">
+
     <div class="contain">
    <div class="word">
+
      <div class="word">
     <p>Liying Wang et. demonstrated a minimal nitrogen  fixation gene cluster from Paenibacillus sp.WLY 78 which was compried of Pnif  promoter and nine structural genes. Inspired by this study, we transferred this  gene cluster to E.coli to create engineered E.coli cells which are capable of  producing active nitrogenase. We achieved this by extracting the gene cluster  from Paenibacillus sp.WLY78, connecting it to plasmid Psb1C3 and transformed it  to E coli cells.In order to ensure the expression of this gene cluster in E  coli,first we verified the transcriptional activity of Pnif promoter in E coli  cells by conducting control experiments.In the test group,we replaced the  native T5 promoter on pQE80L vector with Pnif,connected it to Dronpa fluorescent  protein gene and transformed the new vectors to E.coli cells.In the control  group, pQE80L vectors with T5 promoter and Dronpa gene were transformed to E  coli cells. The comparable level of fluorescence intensity of the two groups  indicated that Pnif promoter is transcriptional active in E coli cells.</p>
+
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
 +
     <img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--PROJECT-d.jpg" width="50%" /></div>
 +
    <div class="word-1" style="height:20px;"></div>
 
     </div>
 
     </div>
<div class="word">
+
<div class="word" id="cds">
<div id="design1" style=" left:10%; width:80%;">
+
<h2>Biosynthesis of CdS semiconductor</h2>
<div id="Layer1" style="visibility: hidden; left: 0; top: 0;"><img src="https://static.igem.org/mediawiki/2018/1/11/T--Nanjing-China--d-1-1.png" width="150" /></div>
+
<p>To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into <em>E. coli</em> strain. After Cd<sup>2+</sup> is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd<sup>2+</sup> ions. At last when S<sup>2-</sup> ions are added into the media, <em>E. coli</em> cells form CdS semiconductor on the cell membrane because of the aggregation.</p></div>
<div id="Layer2" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/d/d5/T--Nanjing-China--d-1-2.png" name="Image1" width="150" /></div>
+
<div id="Layer3" style="visibility: hidden; left: 54px; top: 24px; height: 0px;"><img src="https://static.igem.org/mediawiki/2018/f/f7/T--Nanjing-China--d-1-3.png" width="50" /></div>
+
<div id="Layer4" style="visibility: hidden; left: 125px; top: 145px;"><img src="https://static.igem.org/mediawiki/2018/e/e0/T--Nanjing-China--d-1-4.png" width="300" /></div>
+
<div id="Layer5" style="visibility: hidden; left: 215px; top: 16px; height: 0px; width: 30;"><img src="https://static.igem.org/mediawiki/2018/8/83/T--Nanjing-China--d-1-5.png" width="30" /></div>
+
<div id="Layer6" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/6/6b/T--Nanjing-China--d-1-6.png" width="70" /></div>
+
<div id="Layer7" style="visibility: hidden; left: 352px; top: 70px;"><img src="https://static.igem.org/mediawiki/2018/8/85/T--Nanjing-China--d-1-7.png" name="Image2" width="70" /></div>
+
<div id="Layer8" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/2/27/T--Nanjing-China--d-1-8.png" width="170" /></div>
+
<div class="play" onclick="MM_timelinePlay('Timeline1')">play
+
</div>
+
<div class="stop" onclick="MM_timelineStop('Timeline1')">stop
+
</div>
+
<div id="Layer-all1" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--d-1-all.png" name="Image3" width="500" /></div>
+
</div>
+
</div>
+
<div class="word">
+
<p>Simultaneously, in order to achieve in site synthesis of CdS nanocrystals on cell surfaces,we transformed the vector with opmA-PbrR gene to E.coli cells.This gene encodes opmA-PbrR protein complex,which can be fixed on cell surface by outer membrane protein (OMP) opmA.The function of PbrR protein is to adsorb Cd2+ in the environment and further form CdS nanocrystal on cell surface,a key component of this light-harvesting system. When this system is exposed by light, electrons from electron donor conduct transition while CdS nanocrystals on cell surfaces transfer high-energy electrons to Mo-Fe protein subunit of nitrogenase.Mo-Fe protein then  utilizes the energy from these electrons rather than ATP to reduce dinitrogen into ammonia. With the method mentioned above, we successfully constructed a whole-cell light-driven nitrogen fixation system.</p></div>
+
 
<div class="word">
 
<div class="word">
 
<div  id="design2" style="left:10%; width:80%;">
 
<div  id="design2" style="left:10%; width:80%;">
Line 167: Line 149:
 
<div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div>
 
<div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div>
 
<div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div>
 
<div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div>
<div class="play" onclick="MM_timelinePlay('Timeline2')">play</div>
+
<div class="play" id="button" onclick="MM_timelinePlay('Timeline2')">play</div>
<div class="stop" onclick="MM_timelineStop('Timeline2')">stop</div>
+
<div class="stop" id="button" onclick="MM_timelineStop('Timeline2')">stop</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div class="word" id="nitrogen">
 +
<h2>Light-driven nitrogen fixation in E. coli cells</h2>
 +
<p>To address the problem of electron transduction, CdS semiconductor  act as semiconductors imitating the photosynthetic system under illumination.  It provided excited electrons to <u>a redox mediator methyl viologen (MV) </u>which  then penetrates into <em>E. coli</em> cells  and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe  protein then utilizes the energy from these electrons to reduce dinitrogen to  ammonia. The semiconductor regains its lost electron from sacrificial electron  donors.<br />
 +
  As a part of biohybrid system, the PbrR protein bears a high  specificity. Our system is supposed to self-repair and can be built with a  rather low cost. This design is of general applications as OmpA protein is only  a surface display machinery for <em>E. coli</em>. <br />
 +
  This part of the system is the expansion of our hydrogen production,  and it proves that surface display machinery can be expanded to a general  principle for biohybrid photosynthesis.</p>
 +
  </div>
 
<div class="word">
 
<div class="word">
<p>In later period of our study, in order to elevate the electron transfer efficiency, we introduced Ag2S to realize Ag2S CdS cocatalysis. We respectively introduced ompA-spy tag Ag oligopeptide complex and ompA-spychcatcher-PbrR complex to E.coli cells. In that way, two types of E coli cells--with Ag2S or CdS nanocrystals adsorbed on surfaces specifically bind with each other through covalent bonds between spytag and spycatcher. Eventually, nitrogen fixation efficiency of our system showed a remarkable increase</p>
+
  <div id="design3" style=" left:10%; width:80%;">
<img src="https://static.igem.org/mediawiki/2018/7/77/T--Nanjing-China--design-3.png"width="500" /></div>
+
<div class="word">
+
<div id="design3" style=" left:10%; width:80%;">
+
 
<div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div>
 
<div id="Layer21" style="visibility: hidden; left: 0px;"><img src="https://static.igem.org/mediawiki/2018/c/c4/T--Nanjing-China--d-3-8.png" width="240" /></div>
 
<div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div>
 
<div id="Layer22" style="visibility: hidden; top: 19px; left: 30px;"><img src="https://static.igem.org/mediawiki/2018/9/9e/T--Nanjing-China--d-3-7.png" width="170" /></div>
Line 184: Line 169:
 
<div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div>
 
<div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div>
 
<div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div>
 
<div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div>
<div class="play" onclick="MM_timelinePlay('Timeline3')">play</div>
+
<div class="play" id="button" onclick="MM_timelinePlay('Timeline3')">play</div>
<div class="stop" onclick="MM_timelineStop('Timeline3')">stop</div>
+
<div class="stop" id="button" onclick="MM_timelineStop('Timeline3')">stop</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div class="word" id="device">
 +
<h2>Device</h2>
 +
<p>To apply our system to the real world, we also designed a <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">device</a> consists of 3 modules: incubation module, illumination module and control module.</p></div>
 
</div>
 
</div>
 
  <div class="footer">
 
  <div class="footer">
Line 221: Line 209:
 
         </div>
 
         </div>
 
       </div>
 
       </div>
      </div>
+
    </div>
 
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
   </div>
 
   </div>

Revision as of 08:28, 14 October 2018

Nanjing-China2018

Biosynthesis of CdS semiconductor

To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into E. coli strain. After Cd2+ is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd2+ ions. At last when S2- ions are added into the media, E. coli cells form CdS semiconductor on the cell membrane because of the aggregation.

play
stop

Light-driven nitrogen fixation in E. coli cells

To address the problem of electron transduction, CdS semiconductor act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to a redox mediator methyl viologen (MV) which then penetrates into E. coli cells and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.
As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a rather low cost. This design is of general applications as OmpA protein is only a surface display machinery for E. coli.
This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.

play
stop

Device

To apply our system to the real world, we also designed a device consists of 3 modules: incubation module, illumination module and control module.