Difference between revisions of "Team:Nanjing-China/Background"

Line 87: Line 87:
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li></ul></div>
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li></ul></div>
 
             <ul>
 
             <ul>
     <li><a href="#definition">definition</a></li>
+
     <li><a href="#b">Background</a></li>
  <li><a href="#method">method</a></li>
+
             <li><a href="#reference">References</a></li></ul>
            <li><a href="#choose">choose</a></li>
+
            <li><a href="#principle">principle</a></li>
+
             <li><a href="#whole">whole</a></li></ul>
+
 
</div>
 
</div>
 
</div>
 
</div>
Line 124: Line 121:
 
</ul>
 
</ul>
 
             </li>
 
             </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a></a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
 
       </li>
 
       </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safty</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
</ul>
 
</ul>
Line 144: Line 141:
 
     <div class="word-1" style="height:20px;"></div>
 
     <div class="word-1" style="height:20px;"></div>
 
     </div>
 
     </div>
     <div class="word" id="definition">
+
     <div class="word" id="b" >
    <h2>The definition of nitrogen fixation</h2>
+
    <p>This year, our team Nanjing-China is aimed at nitrogen fixation. Nitrogen fixation is the process that coverts free nitrogen into compound form. </p>
 
     <div class="word-2">
 
     <div class="word-2">
 
     <h3>•What is nitrogen fixation?</h3>
 
     <h3>•What is nitrogen fixation?</h3>
Line 157: Line 154:
 
-reduce the use of chemical nitrogen fertilizers </font> </p>   
 
-reduce the use of chemical nitrogen fertilizers </font> </p>   
 
</div>
 
</div>
     <div class="word-1"><div class="word-background-block" style="width:100%;">   </div>
+
     <div class="word-1"><p>It is generally  known that free nitrogen makes up 78%, a large proportion, of the air. But the  inertia of nitrogen makes it difficult to react with other substances. Besides, only when this indispensable element exists in compound form, can it be  utilized easily by most of the living beings. Fixed nitrogen plays a crucial part in food supply around the world. Fixation of nitrogen in vitro, Haber-Bosch process in other words, requires massive use of fuels, for it will  only occur in the presence of enough energy.  In urgent need of it, plants and crops have  been too dependent on the use ,which turns out to be abuse nowadays, of  fertilizers. All these overuse has led to harsh problems not only constraining  the ecological development but also affecting the environment of the whole  world harmfully. However, biological conversion of gaseous nitrogen to ammonia  as a natural and spontaneous reaction in vivo allows us a brand new angle to  look into, a more feasible way of nitrogen fixation. </p>
    <h4>Nitrogen fixation is essential for life. </h4>
+
</div>
    </div>
+
    </div>
+
        <div class="word" id="method">
+
  <h2>The methods of nitrogem fixation</h2>
+
    <div class="word-2"><img src="https://static.igem.org/mediawiki/2018/9/9c/T--Nanjing-China--i-background-3.gif" width="80%" /></div>
+
    <div class="word-2">
+
    <h3>Nitrogen cycle</h3>
+
    <p align="left"><font color="#FF6600">•Nitrogen fixation:</font><br/>
+
         —N<sub>2 </sub>→ plants by bacteria<br/>
+
    <font color="#FF6600">•Nitrification:</font><br/>
+
     —ammonium → nitrite → nitrate<br/>
+
      —Absorbed by plants<br/>
+
    <font color="#FF6600">•Denitrification:</font><br/>
+
      —Release N to atmosphere</p>
+
<div class="word-background-block" style="height:180px"></div>
+
  </div>
+
      <div class="word-2">
+
    <div class="word-background-block" style="height:80px; width:100%;"></div>
+
    <h3>Haber-Bosch process </h3>
+
    <p align="left"><font color="#FF6600">N2 + 3H<sub>2</sub> → 2NH<sub>3</sub></font>(ΔH° = −91.8 kJ)<br/>
+
    <font color="#FF6600">High temperature<br/>
+
High pressure<br />
+
Need too much energy<br /></font><br/>
+
                        </p>
+
  </div>
+
    <div class="word-2"><img src="https://static.igem.org/mediawiki/2018/9/9c/T--Nanjing-China--i-background-4.gif" width="80%" /></div>
+
  <div class="word-background-block"></div>
+
  <h3>Biological nitrogen fixation</h3>
+
 
     <div class="word-2" style="width:60%"><img src="https://static.igem.org/mediawiki/2018/2/20/T--Nanjing-China--i-background-5.png" width="90%" /></div>
 
     <div class="word-2" style="width:60%"><img src="https://static.igem.org/mediawiki/2018/2/20/T--Nanjing-China--i-background-5.png" width="90%" /></div>
        <div class="word-2" style="width:40%" align="left">
+
         <p>Various  ways are discovered to fix nitrogen in numerous strains. Because pathways that  generate high-energy electrons are evolved to being in their metabolism system.  What&rsquo;s more, plants cannot fix nitrogen as they do to carbon for lack of an efficient  enzyme system, nitrogenase. But some microorganisms do. Together, the energy in  these electrons can be utilized by nitrogenase to convert free nitrogen into  ammonia. </p>
         <p><font color="#CC66FF">Mild reaction conditions</font></p>
+
 
        <p><font color="#0033CC">Relatively inexpensive</font></p>
+
<img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--i-background-7.png" width="80%" />
        <p><font color="#996600">High efficiency </font></p>
+
   <p>Nitrogenase is a huge system varied by the essential metallic co-enzyme it requires such as Mo-Fe, V-Fe and Fe nitrogenase. Wherein, Mo-Fe nitrogenase is better understood than other types. Therefore, in our project, we choose the best known to perform the needed reaction.
        <p><font color="#0099FF">Environmentally friendly</font></p>
+
Meanwhile, the gene clusters that code nitrogenase are different in distinct species. It is reported by previous studies that there is a small nitrogen fixation gene cluster consisting of nine relative genes from Paenibacillus. It is quite simple and has been proved to be functional after transferred into E. coli cells, besides its expression does not lead to obvious negative feedback regulation.
        <div class="word-background-block"></div>
+
</p>
        </div>
+
  </div>
+
  <div class="word" id="choose">
+
      <h2>The choose of nitrogenase</h2>
+
  <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/f/f5/T--Nanjing-China--i-background-6.png" width="90%" />
+
  <p>Molybdenum <br />(MoFe)-dependent</p></div>
+
  <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--i-background-7.png" width="90%" />
+
   <p>Vanadium <br />(VFe)-dependent</p></div>
+
  <div class="word-3" ><img src="https://static.igem.org/mediawiki/2018/f/f0/T--Nanjing-China--i-background-8.png" width="85%" />
+
  <p>Iron-only  <br />(FeFe)-dependent</p></div>
+
  <div class="word-background-block"></div><h4>MoFe has been studied extensively</h4>
+
  <div class="word-background-block"></div><h3>Nitrogen Fixation Gene Cluster </h3>
+
 
   <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Nanjing-China--i-background-9.png" width="85%" />
 
   <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Nanjing-China--i-background-9.png" width="85%" />
  <h4>The minimal nif genes required for nitrogen fixation.</h4>
+
<img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--i-background-10.png" width="100%"/>
  </div>
+
    <p>As illustrated in Fig.5 above, nitrogen is fixed by Mo-Fe nitrogenase. Most of the nitrogenase is Mo-dependent, which exists mainly in bacteria and archaea. Such nitrogenase is made up with two components, Mo-Fe protein and Fe protein. At room temperature and on one atmosphere, it costs at least 16mol ATP to reduce 1 mol dinitrogen to ammonia by the nitrogenase. The process marches as high-energy electrons passed by Fe protein to Mo-Fe protein. After the binding to such electrons, Mo-Fe protein is able to reduce free nitrogen. However, the cost of the reaction is not so economical. In 2016, our team established a system to produce hydrogen driven by light which is considerably cost-effective. Inspired by our previous project, this year, we choose to alter ATP with solar energy.
  <div class="word" id="principle">
+
There has always been an interest in harvesting the most important renewable energy source, the solar energy, which meanwhile is the hardest to capture. The significant breakthrough reported by Katherine et al. showed that certain semiconductor, cadmium sulfide (CdS) nanocrystals, function to photosensitize the Mo-Fe protein, replacing ATP hydrolysis by light harvesting to obtain electrons for the fulfill of the reduction of N2 into NH3. The results contributed a lot to the development of our system. Lead-specific binding protein is applied to biosynthesize such semiconductors.
      <h2>General principle of biological nitrogen fixation </h2>
+
</p>
    <table width="95%" border="1" cellspacing="1" cellpadding="1">
+
<img src="https://static.igem.org/mediawiki/2018/e/e3/T--Nanjing-China--i-background-11.png" width="100%" top="20px"/></td>
      <tr>
+
  <p>Herein, we aim to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system consisting the following elements: (i) a biocompatible and highly efficient light-harvesting inorganic semiconductor; (ii) active engineered E. coli cells as biocatalysts. The engineered E. coli cells that express nitrogenase as well as have the capability of in situ biosynthesis of CdS nanocrystals for the existence of the surface-displayed heavy lead-specific binding proteins is developed. Such system is able to reduce N2 to NH3 driven by light instead of ATP-hydrolysis with considerably high efficiency. The whole-cell system will be more biocompatible and cost-effective than any other ones.</p>
        <td rowspan="2"><font color="#0033CC">01 Hydrolysis of ATP</font></td>
+
        <td width="65%">&nbsp;</td>
+
        <td rowspan="2"><font color="#0099FF">03 MoFe protein forming complexes with low-potential donor</font></td>
+
      </tr>
+
      <tr>
+
        <td><img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--i-background-10.png" width="100%"/><p align="center">Chemical energy (ATP)→Solar energy</p></td>
+
      </tr>
+
      <tr>
+
        <td><font color="#CCCC00">02 Electron transfer </font></td>
+
        <td width="65%">&nbsp;</td>
+
        <td><font color="#CC00FF">04 Reduce N2 to NH3 </font></td>
+
      </tr>
+
    </table>
+
    <div class="word-background-block"></div>
+
      <table width="95%" border="1" cellspacing="1" cellpadding="1">
+
      <tr>
+
        <td rowspan="2"><font color="#0033CC">01 Receive light signals</font></td>
+
        <td width="65%" >&nbsp;</td>
+
        <td rowspan="2"><font color="#0099FF">03 MoFe protein forming complexes with low-potential donor</font></td>
+
      </tr>
+
      <tr>
+
        <td ><img src="https://static.igem.org/mediawiki/2018/e/e3/T--Nanjing-China--i-background-11.png" width="100%" top="20px"/></td>
+
      </tr>
+
      <tr>
+
        <td><font color="#CCCC00">02 Electron transfer </font></td>
+
        <td width="65%" >&nbsp;</td>
+
        <td><font color="#CC00FF">04 Reduce N2 to NH3 </font></td>
+
      </tr>
+
    </table>
+
    </div>
+
  <div class="word" id="whole">
+
      <h2>The characteristics of whole-cell</h2>
+
  <h4><font color="#CC6633">The property and advantage of whole-cells</font></h4>
+
  <p>•Fast  proliferation to enable large-scale application<br />
+
  •Good  portability to permit on-site monitoring<br />
+
  •Inexpensive  and easy to preserve<br />
+
  •  Intracellular cascade reactions to amplify signals<br/>
+
  •  Excellent specificity, sensitivity and stability</p>
+
 
   </div>
 
   </div>
 +
    <div class="word" id="reference" align="left">
 +
      <h2>References</h2>
 +
      <p>1.             Wang, L., et al., <em>A minimal nitrogen fixation gene cluster  from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia  coli.</em> PLoS Genet, 2013. <strong>9</strong>(10):  p. e1003865.<br />
 +
        2.             Fixen, K.R., et al., <em>Light-driven  carbon dioxide reduction to methane by nitrogenase in a photosynthetic  bacterium.</em> Proc Natl Acad Sci U S A, 2016. <strong>113</strong>(36): p. 10163-7.<br />
 +
        3.             Brown, K.A., et al., <em>Light-driven  dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.</em> Science, 2016. <strong>352</strong>(6284): p. 448-50.<br />
 +
        4.             Kuypers, M.M.M., H.K. Marchant, and B. Kartal, <em>The microbial nitrogen-cycling network.</em> Nat Rev Microbiol, 2018. <strong>16</strong>(5): p.  263-276.<br />
 +
        5.             Wei, W., et al., <em>A  surface-display biohybrid approach to light-driven hydrogen production in air.</em> Sci Adv, 2018. <strong>4</strong>(2): p. eaap9253.<br />
 +
        6.             Howard, J.B. and D.C. Rees, <em>Structural basis of biological nitrogen fixation.</em> Chemical Reviews,  1996. <strong>96</strong>(7): p. 2965-2982.</p>
 +
      <p>&nbsp;</p>
 +
      </div>
 
   </div>
 
   </div>
 
  <div class="footer">
 
  <div class="footer">

Revision as of 06:22, 17 October 2018

Nanjing-China2018

This year, our team Nanjing-China is aimed at nitrogen fixation. Nitrogen fixation is the process that coverts free nitrogen into compound form.

•What is nitrogen fixation?

Nitrogen → ammonia (NH3) or other molecules available to living organisms.

What is nitrogen fixation for?

-global food supply
-reduce the use of chemical nitrogen fertilizers 

It is generally known that free nitrogen makes up 78%, a large proportion, of the air. But the inertia of nitrogen makes it difficult to react with other substances. Besides, only when this indispensable element exists in compound form, can it be utilized easily by most of the living beings. Fixed nitrogen plays a crucial part in food supply around the world. Fixation of nitrogen in vitro, Haber-Bosch process in other words, requires massive use of fuels, for it will only occur in the presence of enough energy.  In urgent need of it, plants and crops have been too dependent on the use ,which turns out to be abuse nowadays, of fertilizers. All these overuse has led to harsh problems not only constraining the ecological development but also affecting the environment of the whole world harmfully. However, biological conversion of gaseous nitrogen to ammonia as a natural and spontaneous reaction in vivo allows us a brand new angle to look into, a more feasible way of nitrogen fixation.

Various ways are discovered to fix nitrogen in numerous strains. Because pathways that generate high-energy electrons are evolved to being in their metabolism system. What’s more, plants cannot fix nitrogen as they do to carbon for lack of an efficient enzyme system, nitrogenase. But some microorganisms do. Together, the energy in these electrons can be utilized by nitrogenase to convert free nitrogen into ammonia.

Nitrogenase is a huge system varied by the essential metallic co-enzyme it requires such as Mo-Fe, V-Fe and Fe nitrogenase. Wherein, Mo-Fe nitrogenase is better understood than other types. Therefore, in our project, we choose the best known to perform the needed reaction. Meanwhile, the gene clusters that code nitrogenase are different in distinct species. It is reported by previous studies that there is a small nitrogen fixation gene cluster consisting of nine relative genes from Paenibacillus. It is quite simple and has been proved to be functional after transferred into E. coli cells, besides its expression does not lead to obvious negative feedback regulation.

As illustrated in Fig.5 above, nitrogen is fixed by Mo-Fe nitrogenase. Most of the nitrogenase is Mo-dependent, which exists mainly in bacteria and archaea. Such nitrogenase is made up with two components, Mo-Fe protein and Fe protein. At room temperature and on one atmosphere, it costs at least 16mol ATP to reduce 1 mol dinitrogen to ammonia by the nitrogenase. The process marches as high-energy electrons passed by Fe protein to Mo-Fe protein. After the binding to such electrons, Mo-Fe protein is able to reduce free nitrogen. However, the cost of the reaction is not so economical. In 2016, our team established a system to produce hydrogen driven by light which is considerably cost-effective. Inspired by our previous project, this year, we choose to alter ATP with solar energy. There has always been an interest in harvesting the most important renewable energy source, the solar energy, which meanwhile is the hardest to capture. The significant breakthrough reported by Katherine et al. showed that certain semiconductor, cadmium sulfide (CdS) nanocrystals, function to photosensitize the Mo-Fe protein, replacing ATP hydrolysis by light harvesting to obtain electrons for the fulfill of the reduction of N2 into NH3. The results contributed a lot to the development of our system. Lead-specific binding protein is applied to biosynthesize such semiconductors.

Herein, we aim to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system consisting the following elements: (i) a biocompatible and highly efficient light-harvesting inorganic semiconductor; (ii) active engineered E. coli cells as biocatalysts. The engineered E. coli cells that express nitrogenase as well as have the capability of in situ biosynthesis of CdS nanocrystals for the existence of the surface-displayed heavy lead-specific binding proteins is developed. Such system is able to reduce N2 to NH3 driven by light instead of ATP-hydrolysis with considerably high efficiency. The whole-cell system will be more biocompatible and cost-effective than any other ones.

References

1.             Wang, L., et al., A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 2013. 9(10): p. e1003865.
2.             Fixen, K.R., et al., Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A, 2016. 113(36): p. 10163-7.
3.             Brown, K.A., et al., Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016. 352(6284): p. 448-50.
4.             Kuypers, M.M.M., H.K. Marchant, and B. Kartal, The microbial nitrogen-cycling network. Nat Rev Microbiol, 2018. 16(5): p. 263-276.
5.             Wei, W., et al., A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv, 2018. 4(2): p. eaap9253.
6.             Howard, J.B. and D.C. Rees, Structural basis of biological nitrogen fixation. Chemical Reviews, 1996. 96(7): p. 2965-2982.