Difference between revisions of "Team:Nanjing-China/Model"

Line 3: Line 3:
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<title>Nanjing-China2018</title>
 
<title>Nanjing-China2018</title>
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:1?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:2?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
 
+
#HQ_page .word table{ border-top:rgba(102,102,102,1) double 3px ;border-bottom:rgba(102,102,102,1) double 3px; font-size:85%;  }
.header{z-index:2;}
+
#HQ_page td{border:thin rgba(102,102,102,1) 1.5px;}
.word h3 {
+
#HQ_page  .word-note p{text-align:center;}
color: #06F;
+
#HQ_page #reference li{text-align:left; font-size:90%;}
font-family: "Comic Sans MS", cursive;
+
#HQ_page #code{font-size:85%;}
}
+
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 79: Line 78:
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
      <div class="sub">
+
<div class="sub">
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li></ul></div>
+
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Modeling</a></li></ul></div>
       <ul><li><a href="#part"><font size="-1">part-introduction</font></a></li>
+
       <ul><li><a href="#intro">Introduction</a></li>
    <li><a href="#video">video</a></li></ul>
+
      <li><a href="#method">Method</a></li>
 +
      <li><a href="#r">Refinement:</a></li>
 +
      <li><a href="#document">Document</a></li>
 +
      <li><a href="#reference">Reference</a></li>
 +
      </ul>
 
</div>
 
</div>
 
</div>
 
</div>
Line 126: Line 129:
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
   </div> <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
+
   </div>
</div>  
+
    <div class="header"><img src="https://static.igem.org/mediawiki/2018/2/20/T--Nanjing-China--title-MODEL.png" width="100%" width="100%" onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)" >
  <div class="contain">
+
</div>
     <div class="word">
+
    <div class="contain" >
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
+
     <div class="word" id="intro">
     <img src="https://static.igem.org/mediawiki/2018/4/4c/T--Nanjing-China--PROJECT_h.png" width="45%" /></div>
+
    <p>This year our team  created a mathematical model to optimize the arrangement of the nif gene  cluster. This model helped we refined our design and provided some new  perspectives of our nitrogen-fixation system in transcriptional level.</p>
    <div class="word-1" style="height:20px;"></div>
+
    <p>We developed this model  with two goals in mind:<br />
 +
      1.We want to  achieve the putative best stoichiometric proportion of each nif gene, which is  nifB:nifH:nifD:nifK:nifE:nifN:nifX:nifV=1:3:4:4:1:1:1:1.<br />
 +
      2.We want our system as simple  as possible, that means minimizing numbers of promoters and each nif gene.</p>
 +
    <p>We made the  following assumptions:<br />
 +
      1.There are two  kinds of promoters, both of which can successfully launch the expression of  every nitrogen fixation gene involved in our system. <br />
 +
      2.One promoter is  stronger(called H) while the other is relatively weak(called L). Under promoter  H, each gene&rsquo;s transcription level is double that of under promoter L.<br />
 +
      3.The order of  genes has little influence on their transcriptional level.</p>
 +
    <p>We conducted  Real-time Quantitative PCR to detect the transcription level of nif gene  cluster and the experimental data we received became an important reference for  our modeling.</p>
 +
<div class="word-note">
 +
     <table border="1" cellspacing="0" cellpadding="0">
 +
      <tr>
 +
        <td valign="top">
 +
          <p>gene</p></td>
 +
        <td valign="top"><p>Average value of Cq</p></td>
 +
        <td valign="top"><p>Relative expression level</p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>16S DNA</p></td>
 +
        <td width="191" valign="top"><p>6.33</p></td>
 +
        <td width="191" valign="top"><p>&nbsp;</p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifB</p></td>
 +
        <td width="191" valign="top"><p>19.97</p></td>
 +
        <td width="191" valign="top"><p>7.80E<sup>-05</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifH</p></td>
 +
        <td width="191" valign="top"><p>17.37</p></td>
 +
        <td width="191" valign="top"><p>4.74E<sup>-04</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifD</p></td>
 +
        <td width="191" valign="top"><p>18.34</p></td>
 +
        <td width="191" valign="top"><p>2.42E<sup>-04</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifK</p></td>
 +
        <td width="191" valign="top"><p>20.77</p></td>
 +
        <td width="191" valign="top"><p>4.48E<sup>-05</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifE</p></td>
 +
        <td width="191" valign="top"><p>22.20</p></td>
 +
        <td width="191" valign="top"><p>1.66E<sup>-05</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifN</p></td>
 +
        <td width="191" valign="top"><p>22.24</p></td>
 +
        <td width="191" valign="top"><p>1.62E<sup>-05</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifX</p></td>
 +
        <td width="191" valign="top"><p>22.92</p></td>
 +
        <td width="191" valign="top"><p>1.01E<sup>-05</sup></p></td>
 +
      </tr>
 +
      <tr>
 +
        <td width="191" valign="top"><p>nifV</p></td>
 +
        <td width="191" valign="top"><p>21.25</p></td>
 +
        <td width="191" valign="top"><p>3.22E<sup>-05</sup></p></td>
 +
      </tr>
 +
    </table>
 +
    <p><font size="-1">Table1  The result of qPCR </font></p>
 
     </div>
 
     </div>
    <div class="word" id="part">
 
      <p>In order to apply our system to practical use, we also designed a  device consisting of 4 modules: incubation, illumination, control and  condensation. In our design draft, we hide all the tube-like parts to make the  main body of the device clearer.</p>
 
    <img src="https://static.igem.org/mediawiki/2018/c/c2/T--Nanjing-China--device-whole.jpg" width="100%" />
 
      <p>The incubation module is a shaker inside an incubator which can  shake the flask, so that the engineered strain can grow and participate in  reaction in agreeable conditions. </p>
 
          <img src="https://static.igem.org/mediawiki/2018/e/e3/T--Nanjing-China--device-mul.jpg" width="65%" />
 
        <p>For the illumination module, we choose xenon modulator tube as the  light source. However, it requires high voltage to be excited, so we also add a  potential transformer to convert 220 voltage to higher voltage. </p>
 
        <p>Another problem is that when xenon  modulator tube is illuminating, it would heat the air inside incubator, thus  making the environment unfavorable for our engineered strain. To solve this problem, we place a reflux condenser to cool the xenon  modulator tube, keeping the most suitable temperature. </p>
 
    <img src="https://static.igem.org/mediawiki/2018/f/f5/T--Nanjing-China--device-li.jpg" width="58%" />
 
        <p>The control module is the brain of the  entire device. It directly controls the temperature inside the incubator and the  speed of shaker. The ill module is the brain of the  entire device. The illumination intensity can also be regulated by altering  the position of the xenon modulator tube.</p>
 
            <img src="https://static.igem.org/mediawiki/2018/7/70/T--Nanjing-China--device-cc.jpg" width="60%" />
 
        <p>Our device can not only be applied to nitrogen fixation process, but  also serve as a reactor for other similar light-driven reactions, such as  hydrogen production and carbon fixation. We believe, after further promotion it  will have a fairly promising prospect.</p>
 
 
     </div>
 
     </div>
        <div class="word" id="video">
+
    <div class="word" id="method">
        <div class="word-2" style="width:70%;">
+
    <h3> Method:</h3>
         <div align="center">
+
      <p>To start with, we put all genes into two  groups. One group is under the strong promoter while the other is under the  weak one. We constructed two arrays,weak[i] and expected[i].</p>
            <object width="600" height="400" id="t-visit">
+
    <div class="word-note">
              <param name="AutoStart" value=0 />
+
      <table border="1" cellspacing="0" cellpadding="0" width="90%">
              <video width="600" height="400" controls="controls">
+
         <tr>
              <source src="https://static.igem.org/mediawiki/2018/1/15/T--Nanjing-China--device.mp4" type="video/mp4"></video>
+
          <td width="40%" valign="top"><p>Parameters(i=1,2,3,4,5,6,7,8)</p></td>
              </object>
+
          <td width="60%" valign="top"><p>Meanings</p></td>
      </div>
+
        </tr>
      </div>
+
        <tr>
      <div class="word-2">
+
          <td  valign="top"><p>weak[i]</p></td>
            <img src="https://static.igem.org/mediawiki/2018/c/c3/T--Nanjing-China--real-device.png" width="60%" />
+
          <td valign="top"><p>the relative expression level of each <Em>nif</Em> gene under the weak promoter</p></td>
      </div>
+
        </tr>
 +
        <tr>
 +
          <td  valign="top"><p>weak[i]*</p></td>
 +
          <td valign="top"><p>the relative expression level of each <Em>nif</Em> gene under the weak promoter after normalization</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td valign="top"><p>expected[i]</p></td>
 +
          <td valign="top"><p>the ideal stoichiometric proportion</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td valign="top"><p>expected[i]*</p></td>
 +
          <td valign="top"><p>the ideal stoichiometric proportion after    normalization</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td  valign="top"><p>strong[i]</p></td>
 +
          <td  valign="top"><p>the relative expression level of each <Em>nif</Em> gene under the strong promoter after normalization</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td  valign="top"><p>e<sub>i</sub></p></td>
 +
          <td valign="top"><p>the ideal stoichiometric proportion of  the i<sup>th</sup> gene after all preprocessings </p></td>
 +
        </tr>
 +
        <tr>
 +
          <td valign="top"><p>a<sub>i</sub></p></td>
 +
          <td valign="top"><p>the relative expression level of the i<sup>th</sup> gene under the weak promoter after all preprocessings</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td valign="top"><p>m<sub>i</sub></p></td>
 +
          <td valign="top"><p>the number of the i<Sup>th</Sup> gene under the strong promoter</p></td>
 +
        </tr>
 +
        <tr>
 +
          <td valign="top"><p>n<sub>i</sub></p></td>
 +
          <td valign="top"><p>The number of the i<Sup>th</Sup> gene under the weak promoter</p></td>
 +
        </tr>
 +
      </table>
 +
<p align="center"><font size="-1">Table 2 The table of parameters in our model</font></p>
 
     </div>
 
     </div>
 
+
    <p>Then we did some  necessary preprocessings. Firstly, we found the smallest data in weak[i] and  called it &ldquo;min&rdquo;. We normalized all the other data accordingly by doing:</p>
  </div>
+
<div align="center" style="width:100%;"><img src="https://static.igem.org/mediawiki/2018/4/46/T--Nanjing-China--model-1-1.jpg" height="55px" /></div>
 +
<div align="center" style="width:100%;"><img src="https://static.igem.org/mediawiki/2018/e/e4/T--Nanjing-China--model-1-2.jpg" height="55px" /></div>
 +
<p>We constructed  strong[i]:</p>
 +
<div align="center"><em>strong[i]=2×weak[i]*</em>   </div>                                                <br />
 +
<p>Secondly, to guarantee  the existence of a solution, we adjusted expected[i]* by examining whether it  is greater than or equal to the corresponding weak[i]*, if not, we did:</p>
 +
<div align="center"><em>expected[i]*=weak[i]* </em>   </div>                                              <br />
 +
      <p>
 +
After that, we  began the organization. In order to minimize the total numbers of genes, we  arranged the strong promoter group first, and considered the weak group later.  Because each gene can be considered separately, here we only describe the  organization of the i<sup>th</sup> gene as an example.<br />
 +
For the i<sup>th</sup>  gene, we tried adding one copy of it under the strong promoter. If </p>
 +
<div align="center"><em>|e<sub>i</sub>-2×a<sub>i</sub>|&lt;e<sub>i</sub>,     </em></div>
 +
<p>we actually added  it. Until we have added (m<sub>i</sub>+1) i<sup>th</sup> genes, and got</p>
 +
<div align="center"><em>|e<sub>i</sub>-2(m<sub>i</sub>+1)×a<sub>i</sub>|&gt;=|e<sub>i</sub>-2mi<sub>i</sub>×a<sub>i</sub>| </em> </div>
 +
<p>Then we stopped  adding it and recorded that we have added m<sub>i</sub> i<sup>th</sup> genes  under the strong promoter.<br />
 +
For the weak  promoter group, we applied a similar method. For the i<sup>th</sup> gene, we  tried adding one copy of it under the weak promoter. If</p>
 +
<div align="center"> <em>|e<sub>i</sub>-2×m<sub>i</sub>×a<sub>i</sub>-a<sub>i</sub>|&lt;|e<sub>i</sub>-2×m<sub>i</sub>×a<sub>i</sub>|, </em>    </div>
 +
<p>we actually added  it. Until we have added (n<sub>i</sub>+1) i<sup>th</sup> genes, and got </p>
 +
<div align="center"><em>|e<sub>i</sub>-2×m<sub>i</sub>×a-(n<sub>i</sub>+1)×a<sub>i</sub>|&gt;=|e<sub>i</sub>-2×mi<sub>i</sub>×a<sub>i</sub>-n<sub>i</sub>×a<sub>i</sub>|</em>  </div>
 +
<p>Then we stopped  adding it and recorded that we have added n<sub>i</sub> i<sup>th</sup> genes  under the weak promoter.<br />
 +
In that way, we  were able to determine numbers of the i<sup>th</sup> gene under the two  promoters with which the deviation was the smallest.</p>
 +
<div class="word-1" align="center">
 +
      <img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--model-1.png"  width="100%"/>
 +
      <p><font size="-1">Fig 1. A flow diagram describing the idea of our modeling process</font></p>
 +
      </div>
 +
      <p>According to this flow diagram, we programmed with Python and got the following results:</p>
 +
      <div class="word-1" align="center">
 +
      <img src="https://static.igem.org/mediawiki/2018/e/ed/T--Nanjing-China--model-2.png"  width="100%"/>
 +
    <p><font size="-1">Fig 2. The best arrangement of nif genes according to our calculation</font></p>
 +
      </div>
 +
      <p>With this arrangement, the proportion of nifB: nifH: nifD: nifK: nifE: nifN: nifX: nifV = 15.44: 46.93: 71.88: 62.10: 16.44: 16.04: 16.0: 15.94, which is close enough to the ideal proportion among all the solutions.</p>
 +
    </div>
 +
    <div class="word" id="r">
 +
   
 +
      <h2>Refinement of  our model:</h2>
 +
        <p>We modified the  putative best expression level of nifB:nifH:nifD:nifK:nifE:nifN:nifX:nifV to 5:3:4:4:1:1:1:1.  We believed in this way, we could better simulate the expression of nitrogenase  in our engineered <em>E.coli</em> strains. We made this change because of three  reasons.</p>
 +
      <p>Firstly, nifB is  indispensable for assembly nitrogenase no matter in diazotrophs or engineered <em>E.coli</em> strains. Apart from the minimal nitrogen fixation gene cluster, the genomic DNA  of wide type <em>Paenibacillus  polymyxa </em>includes analogues of nifM, nifU,  nifS and other genes which exist in other nitrogen-fixing microorganisms and  are essential for the correct folding of nitrogenase iron protein. However, the <em>E.coli </em>genome doesn&rsquo;t have such analogues. Nevertheless, it has been  reported that the excessive expression of nifB could compensate for the absence  of nifU and nifS. That is, if nifB is overexpressed in <em>E.coli</em>, these auxiliaries are not necessary. Therefore, the expression level  of nifB should be the highest 5.</p>
 +
      <p>Secondly, compared with  nitrogen-fixing microorganisms, <em>E.coli</em> also lacks some genes that provide electron  transfer function, such as nifF and niff. So the intracellular reductive power  of <em>E.coli</em> is insufficient to accomplish nitrogen fixation.  Thus it is necessary to overexpress nifH(nitrogenase reductase) and the value  is set to 3 instead of 5 because our semiconductor, the CdS part, can provide  additional electrons.</p>
 +
      <p>Thirdly, we set the expression  level of nifD and nifK to be 4 because molybdenum iron protein is an ɑ2β2 allotetramer and is the core of  nitrogenase.</p>
 +
      <p>Based on the new ideal stoichiometric proportion, we adjusted the code and received a more accurate result.</p>
 +
      <div class="word-1" align="center">
 +
      <img src="https://static.igem.org/mediawiki/2018/5/50/T--Nanjing-China--model-3.png"  width="100%"/>
 +
    <p><font size="-1">Fig 3 The best arrangement of nif genes version 2.0.</font></p>
 +
      </div>
 +
      <p>The achieved stoichiometric proportion of nifB: nifH: nifD: nifK: nifE: nifN: nifX: nifV=77.23: 46.93: 71.88: 62.10: 16.44: 16.04: 16.0: 15.94, which  is close enough to the ideal 5:3:4:4:1:1:1:1. <br />
 +
        This model  provided a potential strategy for the improvement of biological activity of  nitrogenase expressed in our engineered <em>E.coli</em> strain and offered a  great help to our further experiments.</p>
 +
    </div>
 +
    <div class="word" id="document">
 +
    Here is the code we taped and used.
 +
    <object width="100%" height="600px" data="https://static.igem.org/mediawiki/2018/7/7d/T--Nanjing-China--model-code.pdf" type="application/pdf"> 
 +
      <param name="src" value="https://static.igem.org/mediawiki/2018/7/7d/T--Nanjing-China--model-code.pdf"> 
 +
</object>
 +
    TXT download:<a href="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--model.txt">https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--model.txt</a>
 +
    <div id="code" align="left">
 +
    <p >The number we typed in:</p>
 +
    <ol><li>findSequence([7.8,47.4,24.2,4.48,1.66,1.62,1.01,3.22],[1,3,4,4,1,1,1,1],['nifB','nifH','nifD','nifK','nifE','nifN','nifX','nifV'])</li>
 +
    <li>findSequence([7.8,47.4,24.2,4.48,1.66,1.62,1.01,3.22],[5,3,4,4,1,1,1,1],['nifB','nifH','nifD','nifK','nifE','nifN','nifX','nifV'])</li>
 +
    </ol>
 +
    </div>
 +
    </div>
 +
    <div class="word" id="reference" align="left">
 +
      <h2>References</h2>
 +
      <ol>
 +
        <li>Wang, X.,  et al., <em>Using  synthetic biology to distinguish and overcome regulatory and functional  barriers related to nitrogen fixation. </em>PLoS One,2013. <strong>8</strong>(7):p.e68677.</li>
 +
        <li>Yang, J.,  et al., <em>Modular  electron-transport chains from eukaryotic organelles function to support  nitrogenase activity.</em> Proc Natl Acad Sci U S A, 2017. <strong>114</strong>(12):p.E2460-E2465.</li>
 +
        <li>Yang, J.,  et al., <em>Polyprotein  strategy for stoichiometric assembly of nitrogen fixation components for  synthetic biology. </em>Proc Natl  Acad Sci U S A, 2018. <strong>115</strong>(36):p.E8509-E8517.</li>
 +
        <li>Yang, J.G.,  et al., <em>Reconstruction  and minimal gene requirements for the alternative iron-only nitrogenase in  Escherichia coli. </em>Proceedings  of the National Academy of Sciences of the United States of America, 2014. <strong>111</strong>(35):p.E3718-E3725.</li>
 +
      </ol>
 +
    </div>
 +
</div>
 
  <div class="footer">
 
  <div class="footer">
 
     <div align="center">
 
     <div align="center">
Line 195: Line 350:
 
       </div>
 
       </div>
 
       </div>
 
       </div>
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
+
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/6/6d/T--Nanjing-China--footer-3.png" width="100%" /></div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Revision as of 12:15, 17 October 2018

Nanjing-China2018

This year our team created a mathematical model to optimize the arrangement of the nif gene cluster. This model helped we refined our design and provided some new perspectives of our nitrogen-fixation system in transcriptional level.

We developed this model with two goals in mind:
1.We want to achieve the putative best stoichiometric proportion of each nif gene, which is nifB:nifH:nifD:nifK:nifE:nifN:nifX:nifV=1:3:4:4:1:1:1:1.
2.We want our system as simple as possible, that means minimizing numbers of promoters and each nif gene.

We made the following assumptions:
1.There are two kinds of promoters, both of which can successfully launch the expression of every nitrogen fixation gene involved in our system.
2.One promoter is stronger(called H) while the other is relatively weak(called L). Under promoter H, each gene’s transcription level is double that of under promoter L.
3.The order of genes has little influence on their transcriptional level.

We conducted Real-time Quantitative PCR to detect the transcription level of nif gene cluster and the experimental data we received became an important reference for our modeling.

gene

Average value of Cq

Relative expression level

16S DNA

6.33

 

nifB

19.97

7.80E-05

nifH

17.37

4.74E-04

nifD

18.34

2.42E-04

nifK

20.77

4.48E-05

nifE

22.20

1.66E-05

nifN

22.24

1.62E-05

nifX

22.92

1.01E-05

nifV

21.25

3.22E-05

Table1 The result of qPCR

Method:

To start with, we put all genes into two groups. One group is under the strong promoter while the other is under the weak one. We constructed two arrays,weak[i] and expected[i].

Parameters(i=1,2,3,4,5,6,7,8)

Meanings

weak[i]

the relative expression level of each nif gene under the weak promoter

weak[i]*

the relative expression level of each nif gene under the weak promoter after normalization

expected[i]

the ideal stoichiometric proportion

expected[i]*

the ideal stoichiometric proportion after normalization

strong[i]

the relative expression level of each nif gene under the strong promoter after normalization

ei

the ideal stoichiometric proportion of the ith gene after all preprocessings

ai

the relative expression level of the ith gene under the weak promoter after all preprocessings

mi

the number of the ith gene under the strong promoter

ni

The number of the ith gene under the weak promoter

Table 2 The table of parameters in our model

Then we did some necessary preprocessings. Firstly, we found the smallest data in weak[i] and called it “min”. We normalized all the other data accordingly by doing:

We constructed strong[i]:

strong[i]=2×weak[i]*   
                                              

Secondly, to guarantee the existence of a solution, we adjusted expected[i]* by examining whether it is greater than or equal to the corresponding weak[i]*, if not, we did:

expected[i]*=weak[i]*    
                                             
     

After that, we began the organization. In order to minimize the total numbers of genes, we arranged the strong promoter group first, and considered the weak group later. Because each gene can be considered separately, here we only describe the organization of the ith gene as an example.
For the ith gene, we tried adding one copy of it under the strong promoter. If

|ei-2×ai|<ei,    

we actually added it. Until we have added (mi+1) ith genes, and got

|ei-2(mi+1)×ai|>=|ei-2mii×ai|  

Then we stopped adding it and recorded that we have added mi ith genes under the strong promoter.
For the weak promoter group, we applied a similar method. For the ith gene, we tried adding one copy of it under the weak promoter. If

|ei-2×mi×ai-ai|<|ei-2×mi×ai|,     

we actually added it. Until we have added (ni+1) ith genes, and got

|ei-2×mi×a-(ni+1)×ai|>=|ei-2×mii×ai-ni×ai|  

Then we stopped adding it and recorded that we have added ni ith genes under the weak promoter.
In that way, we were able to determine numbers of the ith gene under the two promoters with which the deviation was the smallest.

Fig 1. A flow diagram describing the idea of our modeling process

According to this flow diagram, we programmed with Python and got the following results:

Fig 2. The best arrangement of nif genes according to our calculation

With this arrangement, the proportion of nifB: nifH: nifD: nifK: nifE: nifN: nifX: nifV = 15.44: 46.93: 71.88: 62.10: 16.44: 16.04: 16.0: 15.94, which is close enough to the ideal proportion among all the solutions.

Refinement of our model:

We modified the putative best expression level of nifB:nifH:nifD:nifK:nifE:nifN:nifX:nifV to 5:3:4:4:1:1:1:1. We believed in this way, we could better simulate the expression of nitrogenase in our engineered E.coli strains. We made this change because of three reasons.

Firstly, nifB is indispensable for assembly nitrogenase no matter in diazotrophs or engineered E.coli strains. Apart from the minimal nitrogen fixation gene cluster, the genomic DNA of wide type Paenibacillus polymyxa includes analogues of nifM, nifU, nifS and other genes which exist in other nitrogen-fixing microorganisms and are essential for the correct folding of nitrogenase iron protein. However, the E.coli genome doesn’t have such analogues. Nevertheless, it has been reported that the excessive expression of nifB could compensate for the absence of nifU and nifS. That is, if nifB is overexpressed in E.coli, these auxiliaries are not necessary. Therefore, the expression level of nifB should be the highest 5.

Secondly, compared with nitrogen-fixing microorganisms, E.coli also lacks some genes that provide electron transfer function, such as nifF and niff. So the intracellular reductive power of E.coli is insufficient to accomplish nitrogen fixation. Thus it is necessary to overexpress nifH(nitrogenase reductase) and the value is set to 3 instead of 5 because our semiconductor, the CdS part, can provide additional electrons.

Thirdly, we set the expression level of nifD and nifK to be 4 because molybdenum iron protein is an ɑ2β2 allotetramer and is the core of nitrogenase.

Based on the new ideal stoichiometric proportion, we adjusted the code and received a more accurate result.

Fig 3 The best arrangement of nif genes version 2.0.

The achieved stoichiometric proportion of nifB: nifH: nifD: nifK: nifE: nifN: nifX: nifV=77.23: 46.93: 71.88: 62.10: 16.44: 16.04: 16.0: 15.94, which is close enough to the ideal 5:3:4:4:1:1:1:1.
This model provided a potential strategy for the improvement of biological activity of nitrogenase expressed in our engineered E.coli strain and offered a great help to our further experiments.

Here is the code we taped and used. TXT download:https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--model.txt

The number we typed in:

  1. findSequence([7.8,47.4,24.2,4.48,1.66,1.62,1.01,3.22],[1,3,4,4,1,1,1,1],['nifB','nifH','nifD','nifK','nifE','nifN','nifX','nifV'])
  2. findSequence([7.8,47.4,24.2,4.48,1.66,1.62,1.01,3.22],[5,3,4,4,1,1,1,1],['nifB','nifH','nifD','nifK','nifE','nifN','nifX','nifV'])

References

  1. Wang, X., et al., Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One,2013. 8(7):p.e68677.
  2. Yang, J., et al., Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A, 2017. 114(12):p.E2460-E2465.
  3. Yang, J., et al., Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci U S A, 2018. 115(36):p.E8509-E8517.
  4. Yang, J.G., et al., Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(35):p.E3718-E3725.