Difference between revisions of "Team:Goettingen/Design"

 
(167 intermediate revisions by 2 users not shown)
Line 8: Line 8:
 
   </div>
 
   </div>
 
   <h2>Glyphosate detection system</h2>
 
   <h2>Glyphosate detection system</h2>
  <h4>Genomic adaptation to glyphosate</h4>
+
<h4>Why <em>Bacillus subtilis</em>?</h4>
   <p>As outlined in the project description, our topic is all about glyphosate. To create a proper detection system using the Gram-positive model bacterium <em>Bacillus subtilis</em>, we first had to evaluate how this organism grows in the presence of glyphosate. Therefore, we plated a <em>B. subtilis</em> wild type strain on agar plates supplemented with different amounts of glyphosate (0 mM - 60 mM). We observed that the growth of the bacteria was strongly inhibited on agar plates containing 5 mM glyphosate and there was no growth at concentrations higher than 10 mM. After further incubation of the agar plates for 2 days at 37°C, we observed that a high number of mutants appeared on the plates. Whole genome sequencing analyses uncovered that the mutants had inactivated the <em>gltT</em> gene encoding a high-affinity transporter GltT, which is involved in amino acid uptake (1). By analyzing additional mutants that tolerate high amounts of glyphosate, we found a variety of different mutations (transitions, transversions, deletions, insertions and duplications) in the <em>gltT</em> gene. However, the mutations have one thing in common: they all led to the inactivation of the <em>gltT</em> gene! Further adaptation of the a mutant lacking the <em>gltT</em> allowed us to isolate variants of <em>B. subtilis</em> that even tolerate higher amounts of glyphosate. Again, we analyzed the genomes of the evolved bacteria to identify the mutations causing the phenotypes. These analyses revealed that the isolated mutants had inactivated the <em>gltP</em> gene encoding a low-affinity amino acid transporter GltP (2). Our evolution experiments show that glyphosate enters the <em>B. subtilis</em> cell via the amino acid transporters GltT and GltP (unpublished data). To conclude, genomic adaptation to weedkiller led to the identification of the first glyphosate uptake systems!
+
   <p>The people that are interested in our project may ask the question why we are using the Gram-positive bacterium <i>Bacillus subtilis</i> as a working horse. The answer is pretty simple because <b>there are several reasons why <i>B. subtilis</i> is perfectly suited for our project</b>. The spore-forming bacterium <i>B. subtilis</i>, which has been first described by <a href="https://en.wikipedia.org/wiki/Christian_Gottfried_Ehrenberg">Christian G. Ehrenberg</a> in 1835, is commonly found in the upper layers of the soil, and evidence exists that the bacterium is a normal gut commensal in humans (Figure 1) (1). Since its discovery, <i>B. subtilis</i> has been intensively studied and there are currently
 +
 
 +
<a href="http://subtiwiki.uni-goettingen.de/wiki/index.php/Labs_working_on_Bacillus">> 150 labs</a> doing mainly basic research with <i>B. subtilis</i> in order to understand the biology of the organism. The sequence <i>B. subtilis</i> genome has been described in 1997 and refined in 2009 (2,3). <b>A plethora of tools for genetic engineering of <i>B. subtilis</i> and for biochemical analyses of its proteins have been developed</b>. Moreover, due to its natural competence it is extremely easy to genetically manipulate <i>B. subtilis</i>. The intensive research that has been conducted with <i>B. subtilis</i> has constantly increased our level of knowledge about the bacterium. All the information about the genes, proteins, metabolic and regulatory pathways of <i>B. subtilis</i> that is currently available is stored in the <a href="http://subtiwiki.uni-goettingen.de">SubtiWiki</a> database, which has been developed in the <a href="http://www.uni-goettingen.de/en/577601.html">Department of General Microbiology</a> at the <a href="https://www.uni-goettingen.de">University of Göttingen</a>. SubtiWiki has become one of the most complete resources of knowledge on a living organism (4). Since the 1960s <i>B. subtilis</i> has had a history as a test species in <a href="https://www.dlr.de/me/en/Desktopdefault.aspx/tabid-10858/">space microbiology</a> (5). Its endospores can survive up to 6 years in space if coated by dust particles protecting it from solar UV rays. In the past years, <i>B. subtilis</i> has also been subjected to large-scale genome minimization in order to create a so-called <a href="http://www.minibacillus.org"> Minibacillus</a> (6). The Minibacillus project addresses two questions: (i) the identification of the minimal gene set that is needed to sustain life, and (ii) the rational design and construction of tightly controllable cell factories for sustainable development (6). The final goal of the project is to obtain a Minibacillus strain that is equipped with a minimal core genome (7). A minimal core genome only consisting of essential genes will help to understand how a specific gene contributes to a living cell! Nontoxigenic and nonpathogenic strains of <i>B. subtilis</i> are widely available and have been safely used in a variety of food applications in industry. <b><i>B. subtilis</i> spores are used to clean toilets of  
 +
the German Autobahn</b> (<a href="http://www.noblebio.com">http://www.noblebio.com</a>)! Moreover, the bacterium has been engineered for the production of fine chemicals and enzymes such as vitamins and proteases, respectively (8). <b>Given the fact that <i>B. subtilis</i> has been intensively studied over the past 183 years, the bacterium belongs to the best-understood organisms that are available on earth! </b> Some people even believe that <i>B. subtilis</i> is endowed with the highest bacterial <a href="https://en.wikipedia.org/wiki/Intelligence_quotient"> IQ</a> (9)! <b>Finally, - and this fact is very important for our project - as a soil bacterium, representatives of <i>B. subtilis</i> are increasingly used in agriculture to promote plant growth and to protect against plant pathogens </b>(10-12).
 +
 
 +
 
 +
 
 +
 
 +
<div class="article_picture">
 +
    <img src="https://static.igem.org/mediawiki/2018/7/75/T--goettingen--erde.jpg">
 +
    <p>Figure 1. <i>B. subtilis</i> as a model system to study the interaction between glyphosate and a representative of the soil rhizosphere.</p>
 +
</div>
 +
 
 
   </p>
 
   </p>
  <h4>Identification of promoters that are regulated by glyphosate</h4>
+
<p>
   <p>Since we planned to create a system for the detection of glyphosate, we took a closer look at the pathway for biosynthesis of the essential aromatic amino acids tryptophan, tyrosine, and phenylalanine. This pathway involves the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase, which generates the precursor for the <em>de novo</em> synthesis of the three amino acids (3). Glyphosate specifically inhibits the EPSP synthase in plants, fungi, bacteria and archaea (4,5,6,7). The EPSP synthase converts phospoenolpyruvate (PEP) and shikimic acid-3-phosphate (S3P) into EPSP. Therefore, inhibition of the EPSP synthase by glyphosate results in the depletion of the cellular levels of aromatic amino acids unless they are provided by the environment (4,8,9,10). In <em>B. subtilis</em> the EPSP synthase is encoded by the <em>aroE</em> gene for which we could show that it is essential for growth of the bacteria (unpublished data)! We came up with the hypothesis that treatment of <em>B. subtilis</em> with glyphosate inhibits the EPSP synthase AroE, which probably lead to upregulation of the genes involved biosynthesis of the aromatic amino acids. We were particularly interested in the <em>trpE</em> and <em>trpP</em> genes, encoding the subunit I of the anthranilate synthase TrpE (11) and the tryptophane transporter TrpP (12), respectively. In case the of the <em>trpE</em> and <em>trpP</em> genes are upregulated in the presence of glyphosate, the promoters driving the expression of these genes are suitable to generate reporter systems to detect the weedkiller. To assess the expression of the <em>trpE</em> and <em>trpP</em> genes, the promoters were fused to the <em>lacZ</em> gene encoding the β-galactosidase from <em>Escherichia coli</em>. The constructs were integrated into the genome of <em>B. subtilis</em> and the resulting strains were used for enzyme activity assays. Surprisingly, the activities of the two selected promoters did not change when the bacteria were cultivated with glyphosate. Thus, the promoters do not respond to the weedkiller in <em>B. subtilis</em>.</p>
+
<h4>Genomic adaptation of <em>Bacillus subtilis</em> to glyphosate</h4>
 +
   <p>Glyphosate (<i>N</i>-(phosphonomethyl)glycine) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase in plants, fungi, bacteria and archaea (13-16). The EPSP synthase converts phospoenolpyruvate (PEP) and shikimic acid-3-phosphate (S3P) into EPSP, which serves as a precursor for the <em>de novo</em> synthesis of aromatic amino acids tryptophan, tyrosine and phenylalanine (17). Therefore, inhibition of the EPSP synthase by glyphosate results in the depletion of the cellular levels of aromatic amino acids unless they are provided by the environment (13,18-20).
 +
Few years after the discovery of the mode of action of glyphosate it has been shown that the <i>aroA</i> gene from enteric bacteria such as <i>Salmonella typhimurium</i> can accumulate mutations, which renders the encoded EPSP synthase insensitive to glyphosate (14). In the meantime, several glyphosate-insensitive EPSP synthase mutant variants have been generated by either random or directed mutagenesis or they have been isolated from glyphosate-resistant organisms (21-35). The structural characterization of the EPSP synthases from <i>Agrobacterium</i> sp. strain CP4 and <i>Escherichia coli</i> revealed that glyphosate targets the PEP binding site and acts as a competitive inhibitor of the enzyme (36,37). EPSP synthases that are insensitive to glyphosate have been used to genetically engineer glyphosate-tolerant crops (38-44).
 +
</p>
 +
<p>
 +
While the interaction between glyphosate and bacteria like <i>E. coli</i>, <i>Enterobacter</i> and <i>Burkholderia thailandensis</i> has been studied at the transcriptome level (45-47), <b>not much is known about the interaction between weedkiller and the Gram-positive soil bacterium <i>B. subtilis</i> </b>(18). Previous studies revealed that growth of <i>B. subtilis</i> is inhibited by glyphosate due to the inactivation of the EPSP synthase (18,20,48). Moreover, in order to enhance glyphosate resistance in crops, the <i>B. subtilis</i> glycine oxidase has been engineered to improve the degradation of glyphosate to aminomethyl-phosphonic acid and glyoxlate (49). Finally, experimental evidence suggests that the <i>B. subtilis</i> strain Bs-15, which was isolated from a pepper plant is capable of degrading glyphosate (50). However, in this <i>B. subtilis</i> isolate, the glyphosate degradation pathway remains to be identified. <b>The first step in developing a powerful glyphosate detection system using <i>B. subtilis</i> is to assess the potential of the bacteria to adapt to the herbicide at the genome level!</b> For this purpose, we will perform adaptive laboratory experiments (ALE) (51) to assess the potential of <i>B. subtilis</i> to adapt to toxic levels of glyphosate at the genome level. The strains generated by ALE will be analyzed by whole-genome sequencing and reversely engineered in the laboratory to reconstitute the genotypes and phenotypes (Figure 2).
 +
<div class="article_picture">
 +
    <img src="https://static.igem.org/mediawiki/2018/c/ca/T--goettingen--glyphosate_interaction.jpg">
 +
    <p>Figure 2. Growth of <i>B. subtilis</i> in the presence of glyphosate may lead to the accumulation of mutations that confer resistance to the weedkiller. The bacteria may also adapt to the weedkiller by differential regulation of gene expression.</p>
 +
</div>  
  
  <p>To find promoters that are regulated by glyphosate, we performed RNAseq analyses with the help of Dr. Anja Poehlein from the Göttingen Genomics Laboratory (G2L) (http://appmibio.uni-goettingen.de/index.php?sec=g2l). For this purpose, we cultivated <em>B. subtilis</em> with sublethal amounts of the glyphosate and analyzed the transcriptome. Interestingly, we found that the bacteria that were cultivated with the weedkiller > 10-fold downregulated the genes involved in zinc homeostasis. Thus, we identified novel promoters that respond to the weedkiller and are therefore suitable for the construction of a glyphosate detection system. The principle of the detection system is shown below.
+
</p>
 +
<p>
 +
  <h4>Identification of <em>Bacillus subtilis</em> promoters responding to glyphosate</h4>
 +
  <p><b>Promoters that are regulated by glyphosate in <i>B. subtilis</i>, will be identified by transcriptome analyses</b> that will be done with the help of Dr.&nbsp;Anja Poehlein and Prof. Dr.&nbsp;Rolf Daniel from the <a href="http://appmibio.uni-goettingen.de/index.php?sec=g2l">Göttingen Genomics Laboratory</a>. For this purpose, we will cultivate <em>B. subtilis</em> in the absence and in the presence of sublethal amounts of the glyphosate and analyze the transcriptome by performing RNAseq. Genes that are strongly up- and down-regulated are of special interest because the promoters of these genes might be useful for the development of a glyphosate detection system (see Figure 2).
 
   </p>
 
   </p>
 
+
</p>
<h4>An enzyme-based reporter system for the detection of glyphosate</h4>
+
</p>
   <p>The reporter system to detect glyphosate is based on our finding that genes, which are involved in zinc homeostasis in <em>B. subtilis</em> are repressed in the presence of the weedkiller. To allow the detection of glyphosate, we want to fuse a glyphosate-dependent promoter to the <em>xylR</em> gene encoding a transcriptional repressor of the <em>xylA-xylB </em> and <em>xynP-xynB</em> operons (13). We expect that the <em>xylR</em> is transcribed in the absence of the weedkiller because the glyphosate-dependent promoter is active. Furthermore, the production of the XylR causes repression of the <em>xynB</em> gene encoding the xylan β-1,4-xylosidase XynB (14). The method for detecting the β-xylosidase activity is very simple. Therefore, lack of β-xylosidase activity indicates the absence of glyphosate. By contrast, during growth of the bacteria in the presence of glyphosate, the <em>xylR</em> gene is repressed and the β-xylosidase is produced. Therefore, the β-xylosidase activity level indicates the presence of glyphosate. Once characterized, the reporter system can also be introduced in <em>B. subtilis</em> that tolerate high amounts of glyphosate (see above).</p>
+
<h4>A reporter system for the detection of glyphosate</h4>
 +
   <p>The reporter system to detect glyphosate will be constructed based on the results of the transcriptome analyses using <em>B. subtilis</em>. The principle of a glyphosate detection system is shown in Figure 3. To allow the detection of glyphosate, we want to fuse a glyphosate-dependent promoter to a gene encoding a transcriptional repressor. The repressor gene should be transcribed in the absence of the weedkiller because the glyphosate-dependent promoter is active. Furthermore, the produced repressor prevents transcription of a reporter gene encoding a fluorescent protein. Therefore, lack fluorescence indicates the absence of glyphosate. By contrast, during growth of the bacteria in the presence of glyphosate, the repressor gene is inactive and the flourescent protein is produced. Therefore, <b>the fluorescence level indicates the presence of glyphosate</b>. Once characterized, the reporter system can also be introduced in <em>B. subtilis</em> that tolerate high amounts of glyphosate (see above).</p>
  
 
<div class="article_picture">
 
<div class="article_picture">
     <img src="https://static.igem.org/mediawiki/2018/c/c8/T--Goettingen--design-xylose_repressor_reporter.png">
+
     <img src="https://static.igem.org/mediawiki/2018/a/a3/T--goettingen--glyphosate_reporter.jpg">
     <p>In the absence of glyphosate, the promotor fused to the <em>xylR</em> gene is active. XylR prevents the synthesis of the β-xylosidase XynB. When is glyphosate present, the <em>xylR</em> gene not transcribed and the activity of the β-xylosidase XynB can be detected.</p>
+
     <p>Figure 3. In the absence of glyphosate, the promoter (<i>P</i>) driving the transcription of the repressor gene is active. The encoded repressor (R) binds to the operator (<i>O</i>) and prevents transcription of the reporter gene. In the presence of glyphosate, the repressor (R) is not synthesized and the RNA polymerase-sigma factor complex (RNAP) can transcribe the reporter gene. The bacteria become fluorescent.</p>
  </div>
+
</div>
 +
</p>
 +
</p>
  
   <h4>Fluorescence tagging</h4>
+
   <h4>Glyphosate detection by monitoring intraspecies competition</h4>
   <p>Since we had problems to realize the <em>lacZ</em> reporter system, we came up with a new reporting system that does not use molecular switches. For this system, we tagged strains that differ in their glyphosate resistance with fluorophores. We used mTagBFP (blue fluorescent protein), GFP (green fluorescent protein), and mOrange (orange fluorescent protein) as markers, which were obtained from the iGEM DNA distribution kit. The detection system is based on a competition assay. Cells that have high glyphosate resistance TO DO are marked orange, cells with moderate glyphosate resistance are marked blue and cells that cannot survive glyphosate treatment are marked green. Grown in medium without glyphosate, all cells show the same fitness. However, grown in medium with glyphosate, only adapted cells would survive, which could be detected by measuring the fluorescence.
+
   <p>We also want to develop a reporter system for the detection of glyphosate by <a href="https://www.jove.com/video/51196/monitoring-intraspecies-competition-bacterial-cell-population">monitoring intraspecies competition</a> of fluorescently labelled <em>B. subtilis</em> strains that tolerate different amounts of the weedkiller (52). The isolated <em>B. subtilis</em> mutants that grow in the presence of different amounts of glyphosate are perfectly suited to develop a reporter system that is based on intraspecies competition. For labelling of our strains, we will use the genes encoding the blue fluorescent protein mTagBFP, the green fluorescent protein GFP, and the orange fluorescent protein mOrange, which we obtained from the iGEM DNA distribution kit. The detection system is based on an intraspecies competition assay using blue, green and orange <em>B. subtilis</em> strains that are mixed in an 1:1:1 ratio (see Figure 4). The blue, green and orange <em>B. subtilis</em> strains tolerate different amounts of glyphosate. Therefore, in the absence of glyphosate, we expect that all strains survive in a liquid culture. By contrast, during growth in the presence of glyphosate only those cells survive that tolerate high amounts of the weedkiller. Thus, <b>the ratio of the fluorescently labelled strains after cultivation tells us about the amount of glyphosate that was present in the culture</b>. The intraspecies competition assay may also be conducted using <em>B. subtilis</em> strains that are labelled with other reporter genes (e.g. <em>lacZ</em>).
 
   </p>
 
   </p>
 
   <div class="article_picture ">
 
   <div class="article_picture ">
     <img src="https://static.igem.org/mediawiki/2018/b/b0/T--Goettingen--design-product.png">
+
     <img src="https://static.igem.org/mediawiki/2018/2/23/T--goettingen--B_subtilis_GS_competition_III.jpg">
 
      
 
      
<p>This figure shows a possible application of our glyphosate detector. Fluorescence marked spores, in this case the green color indicates high glyphosate resistance, are propagated on a sample and cultivated. If there is a high glyphosate concentration within the sample, only the green marked cells can survive. If the glyphosate concentration is at a low level, the non-marked cells can survive, but are inhibited in their growth. When there is no glyphosate present, both strains will grow equally.</p>
+
<p>Figure 4. The glyphosate detection system the is based on intraspecies competition. A mixture of spores of fluorescently labelled <em>B. subtilis</em> strains that tolerate different amounts of glyphosate are co-cultivated with medium supplemented with different amounts of the weedkiller. In the absence of glyphosate, all strains grow equally. At low levels of glyphosate, all cell types will survive but more of the cells that are resistant to the weedkiller are present after co-cultivation. In the presence of high amounts of glyphosate, only the resistant cells will survive and outcompete the non-resistant cells. </p>
  </div>
+
</div>
  <p>Such detection system as described in the figure above could also be used by customers, albeit the cells have to be observed with fluorescence detecting device. TO DO. Another option would be that customers could send their samples to a public laboratory company that uses our test kit for determining the glyphosate concentration.
+
</p>
  </p>
+
</p>  
   <h4>Glyphosate degradation</h4>
+
 
   <p>We conducted a survey and it brought our attention to another important topic within our project. People that are not into science questioned if it would be possible to degrade glyphosate with our detector-bacterium. To address this question, we searched in the literature for such a method and found in Castle&nbsp;et&nbsp;al.,&nbsp;2004 a solution: the glyphosate-acetyl-transferase (GAT) from <em>Bacillus&nbsp;licheniformis</em>. This enzyme N-acetylates glyphosate, which then has no herbicidal effect anymore (Franz et al.,&nbsp;1997). <em><strong>Unfortunately, we were currently not able to clone this resistant form into Bacillus!!!!</strong></em>
+
   <h4>Engineering <em>Bacillus subtilis</em> to disarm glyphosate</h4>
  </p>
+
   <p>Many years ago it has been observed that some bacteria, which were isolated from glyphosate contaminated soil, are capable of degrading the weedkiller (53). It has also been found that glyphosate can be inactivated by covalent modification such as phosphorylation (54,55) and acetylation (56). For instance, the glyphosate <em>N</em>-acetyltransferase GAT from the Gram-positive soil bacterium <em>Bacillus licheniformis</em> transfers the acetyl group from acetyl-CoA onto the amino group of the weedkiller (Figure 5) (56). The <em>N</em>-acetylated form of glyphosate does not inhibit the EPSP synthase (see above). The GAT was also subjected to directed evolution for creating an enzyme with higher efficiency and increased specificity for the herbicide (57,58). Therefore, bacteria like <em>B. subtilis</em> expressing the GAT should tolerate high amounts of glyphosate even though it is taken up from the environment. Furthermore, it has been observed that bacteria can become resistant to glyphosate by the accumulation of mutations in the EPSP synthase gene (see above). For instance, it has been reported that mutations in the <em>aroA</em> gene of <em>Salmonella typhimurium</em> render the encoded EPSP synthase insensitive to glyphosate (14). It has also been shown that the EPSP synthase from <em>E. coli</em> can become insensitive to glyphosate. For instance, a mutant variant of the <em>E. coli</em> EPSP synthase in which the proline at position 101 is replaced by leucine decreased the inhibitor potency of glyphosate (18). Although the proline residue at position 101 is not directly involved in glyphosate binding, any mutation at this site seem to result in a structural change in the weedkiller-binding site, thereby rendering the EPSP synthase less sensitive to glyphosate (30). The replacements of glycine by alanine and alanine by threonine at the positions 96 and 183, respectively, in the EPSP synthase also confer glyphosate insensitivity to the enzyme (59). <b> The individual overproduction of the Gat and the AroA(G96A A183T) enzymes may significantly increase glyphosate tolerance of <em>B. subtilis</em></b>. Moreover, co-overproduction of the enzymes may synergistically increase glyphosate tolerance. In this part of the project, we engineer <em>B. subtilis</em> to improve our reporter systems to allow the detection of high amounts of glyphosate. Currently, we are working on the integration of the <em>gat</em> and the <em>aroA(G96A A183T)</em> genes into the genome of <em>B. subtilis</em>.   
<p>To avoid dying cells due to their disability to produce the essential aromatic amino acids, we thought about a resistant form of the EPSP-synthase. We found in Eschenburg <em>et al</em>., 2002 that a mutation at position 96 in the peptidechain from glycine to alanine provides a significant higher resistance against glyphosate. This resistant form should rescue the cells from their glyphosate sensitivity. However, this approach would not solve the problem with the blue cells without glyphosate treatment. <em><strong>Unfortunately, we were currently not able to clone this resistant form into Bacillus!</strong></em>
+
 
   </p>
 
   </p>
 +
 +
  <div class="article_picture ">
 +
    <img src="https://static.igem.org/mediawiki/2018/f/fb/T--goettingen--glyphosate_EPSP_synthases.jpg">
 +
   
 +
<p>Figure 5. The glyphosate <i>N</i>-acetyltransferase GAT from <i>B. licheniformis</i> (PDBid: <a href="http://www.rcsb.org/structure/2BSW">2BSW</a>)
 +
 +
 +
 +
 +
converts Acetyl-CoA and the toxic herbicide to <i>N</i>-acetylglyphosate, which is not toxic (56,60). The AroA Pro101Leu mutant variant from <i>E. coli</i> (PDBid: <a href="http://www.rcsb.org/structure/2QFU">2QFU</a>) is less sensitive to inhibition by glyphosate (30). </p>
 +
</div>
 +
</p>
 +
</p>
 +
 
   <hr>
 
   <hr>
 
   <h2>References</h2>
 
   <h2>References</h2>
 
   <ol>
 
   <ol>
    <li>Zaprasis <em>et al.</em> (2015) Appl. Environ. Microbiol. 81: 250-259.
+
<li>Ehrenberg (1835) Akademie der Wissenschaften zu Berlin. pp. 145-336.   
    <li>Tolner <em>et al.</em> (1995) J. Bacteriol. 177: 2863-2869.
+
<li>Kunst <em>et al.</em> (1997) Nature 390: 249-256.
    <li>Herrmann and Weaver (1999) The shikimate pathway. Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50: 473-503.
+
<li>Barbe <em>et al.</em> (2009) Microbiology 155: 1758-1775.
    <li>Amrhein <em>et al.</em> (1983) FEBS Lett. 157: 191-196.
+
<li> Zhu & Stülke (2018) Nucleic Acids Res. 46: D743-748.
    <li>Comai <em>et al.</em> (1983) Science 221: 370-371.
+
<li>Horneck <em>et al.</em> (2010) Microbiol. Mol. Biol. Rev. 74: 121-156.
    <li>Schulz <em>et al.</em> (1984) Arch. Microbiol. 137: 121-123
+
<li>Juhas <em>et al.</em> (2014) Microbiology 160: 2341-2351.
     <li>Steinrücken and Amrhein (1980) Biochem. Biophys. Res. Commun. 94: 1207-1212.
+
<li>Reuß <em>et al.</em> (2016)  Microbiol. Mol. Biol. Rev. 80: 955-987.
    <li>Fischer <em>et al.</em> (1986) J. Bacteriol. 168: 1147-1154
+
<li>Hohmann <em>et al.</em> (2016) Wiley-
    <li>Gresshoff  (1979) Aust. J. Plant. Physiol. 6: 177-185.
+
VCH Verlag GmbH & Co. KGaA; 2016:221-297.
 +
<li>Pinto & Mascher (2016) Curr. Genet. 62: 487-498.
 +
<li>Qiao <em>et al.</em> (2017) BMC Microbio. 17: 131.
 +
<li>Xie <em>et al.</em> (2014) Mol. Plant Microbe Interact. 27: 655-663.
 +
<li> Tahier <em>et al.</em> (2017) Front. Microbiol. 8:171.
 +
 
 +
<li>Amrhein <em>et al.</em> (1983) FEBS Lett. 157: 191-196.
 +
<li>Comai <em>et al.</em> (1983) Science 221: 370-371.
 +
<li>Schulz <em>et al.</em> (1984) Arch. Microbiol. 137: 121-123  
 +
     <li>Steinrücken & Amrhein (1980) Biochem. Biophys. Res. Commun. 94: 1207-1212.
 +
<li>Herrmann & Weaver (1999) Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50: 473-503. 
 +
<li>Fischer <em>et al.</em> (1986) J. Bacteriol. 168: 1147-1154
 +
  <li>Gresshoff  (1979) Aust. J. Plant. Physiol. 6: 177-185.
 
     <li>Majumder <em>et al.</em> (1995) Eur. J. Biochem. 229: 99-106.
 
     <li>Majumder <em>et al.</em> (1995) Eur. J. Biochem. 229: 99-106.
    <li>Shimotsu <em>et al.</em> (1986) J. Bacteriol. 166: 461-471.
+
<li>Stalker <em>et al.</em> (1985) J. Biol. Chem. 260: 4724-4728.  
    <li>Sarsero <em>et al.</em> (2000) J. Bacteriol. 182: 2329-2331.
+
<li>Sost & Amrhein (1990) Arch. Biochem. Biophys. 282: 433-436.
    <li>Gärtner <em>et al.</em> (1992) Mol. Gen. Genet. 232: 415-422.
+
<li>Padgette <em>et al.</em> (1991) J. Biol. Chem.  266: 22364-22369.
    <li>Lindner <em>et al.</em> (1994) Microbiology 140: 753-757.
+
<li>He <em>et al.</em> (2001) Biochim. Biophys. Acta 1568: 1-6.
    <li>Eschenburg S, Healy, ML, Priestman MA. et al. Planta (2002) 216: 129.</li>
+
<li>He <em>et al.</em> (2003) Biosci. Biotechnol. Biochem. 67: 1405-1409.
    <li>Franz, J.E. (1979) in: Adv. Pestic. Sci. Vol. 2, E. 139-147 (Geissbuehler, H. ed.) Pergamon, Oxford.
+
<li>Bearson <em>et al.</em> (2002) Plant Physiol. 129: 1265-1275.
    </li>
+
<li>Eschenburg <em>et al.</em> (2002) Planta 216: 129-135.
    <li>Haslam, E. 1974 The Shikimate Pathway. Wiley, New York.
+
<li>Sun <em>et al.</em> (2005) Appl. Envrion. Microbiol. 71: 4771-4776.
    </li>
+
<li>Zhou <em>et al.</em> (2006) Plant Physiol. 140: 184-195.
    <li>Schönbrunn, E., Eschenburg, S., Shuttleworth, W.A., Schloss, J.V., Amrhein, N., Evans, J.N., and Kabsch, W. 2001. Interaction of the herbicide glyphosate with its target enzyme 5-enolpyruvylshikimate-3-phosphate synthase in atomic detail. <em>Proc Natl Acad Sci U S A </em> <strong>98: </strong>1376-80.
+
<li>Healy-Fried <em>et al.</em> (2007) J. Biol. Chem. 282: 32949-32955.
 +
<li>Vande Berg <em>et al.</em> (2008) Pest. Manag. Sci. 64: 340-345.
 +
<li>Funke <em>et al.</em> (2009) J. Biol. Chem. 284: 9854-9860.
 +
<li>Tian <em>et al.</em> (2010) Appl. Environ. Microbiol. 76: 6001-6005.
 +
<li>Pollegioni <em>et al.</em> (2011) FEBS J. 278: 2753-2766.
 +
<li>Chekan <em>et al.</em> (2016) MedChemComm. 7: 28-36.
 +
<li>Schönbrunn <em>et al.</em> (2001) Proc. Natl. Acad. Sci. USA 98: 1376-1380.
 +
<li>Funke <em>et al.</em> (2006) Proc. Natl. Acad. Sci. USA. 103: 13010-13015.
 +
<li>Della-Cioppa <em>et al.</em> (1987) Nat. Biotechnol. 5: 579-584.
 +
<li>Padgette <em>et al.</em> (1995) Crop Science 35: 1451-1461.
 +
<li>Barry <em>et al.</em> (1997) U.S. Patent 5633435.
 +
<li>Cao <em>et al.</em> (2012) PLoS One. 7: e38718.
 +
<li>Guo <em>et al.</em> (2015) Front. Plant. Sci. 15: 847.
 +
<li>Zhang <em>et al.</em> (2017) J. Integrative Agriculture 16: 551-558.
 +
<li>Fartyal <em>et al.</em> (2018) Front. Plant. Sci. 13: 144.
 +
<li>Kang <em>et al.</em> (2011) Genome Res. 21: 925-935.
 +
<li>Fei <em>et al.</em> (2013) FEMS Microbiol. Lett. 349: 135-143.
 +
<li>Lu <em>et al.</em> (2013) Mol. Biosyst. 9: 522-530.
 +
<li>Selvapandiyan <em>et al.</em> (1995) FEBS Lett. 374: 253-256.
 +
<li>Pedotti <em>et al.</em> (2009) J. Biol. Chem. 284: 36415-36423.
 +
<li>Yu <em>et al.</em> (2015) Genet. Mol. Res. 14: 14717-14730.
 +
<li>Dragosits & Mattanovich (2013) Microb. Cell Fact. 12: 64.
 +
<li>Stannek <em>et al.</em> (2014) J. Vis. Exp. 18: e51196.
 +
    <li>Hove-Jensen <em>et al.</em> (2014) Microbiol. Mol. Biol. Rev. 78: 176-197.
 +
    <li>Rao <em>et al.</em> (1983) Antimicrob. Agents Chemother. 24: 689-695.
 +
    <li>Penaloza-Vazquez <em>et al.</em> (1995) Appl. Environ. Microbiol. 61: 538-543.
 +
    <li>Castle <em>et al.</em> (2004) Science 304: 1151-1154.
 +
<li>Siehl <em>et al.</em> (2005) Pest. Manag. Sci. 61: 235-240.
 +
    <li>Siehl <em>et al.</em> (2007) J. Biol. Chem. 282: 11446-11455.
 +
    <li>Kahrizi <em>et al.</em> (2007) Plant. Cell Rep. 26: 95-104.
 +
    <li>Keenan <em>et al.</em> (2005) Proc. Natl. Acad. Sci. USA 26: 95-104.
 
     </li>
 
     </li>
 
   </ol>
 
   </ol>

Latest revision as of 17:29, 17 October 2018

Design

Glyphosate detection system

Why Bacillus subtilis?

The people that are interested in our project may ask the question why we are using the Gram-positive bacterium Bacillus subtilis as a working horse. The answer is pretty simple because there are several reasons why B. subtilis is perfectly suited for our project. The spore-forming bacterium B. subtilis, which has been first described by Christian G. Ehrenberg in 1835, is commonly found in the upper layers of the soil, and evidence exists that the bacterium is a normal gut commensal in humans (Figure 1) (1). Since its discovery, B. subtilis has been intensively studied and there are currently > 150 labs doing mainly basic research with B. subtilis in order to understand the biology of the organism. The sequence B. subtilis genome has been described in 1997 and refined in 2009 (2,3). A plethora of tools for genetic engineering of B. subtilis and for biochemical analyses of its proteins have been developed. Moreover, due to its natural competence it is extremely easy to genetically manipulate B. subtilis. The intensive research that has been conducted with B. subtilis has constantly increased our level of knowledge about the bacterium. All the information about the genes, proteins, metabolic and regulatory pathways of B. subtilis that is currently available is stored in the SubtiWiki database, which has been developed in the Department of General Microbiology at the University of Göttingen. SubtiWiki has become one of the most complete resources of knowledge on a living organism (4). Since the 1960s B. subtilis has had a history as a test species in space microbiology (5). Its endospores can survive up to 6 years in space if coated by dust particles protecting it from solar UV rays. In the past years, B. subtilis has also been subjected to large-scale genome minimization in order to create a so-called Minibacillus (6). The Minibacillus project addresses two questions: (i) the identification of the minimal gene set that is needed to sustain life, and (ii) the rational design and construction of tightly controllable cell factories for sustainable development (6). The final goal of the project is to obtain a Minibacillus strain that is equipped with a minimal core genome (7). A minimal core genome only consisting of essential genes will help to understand how a specific gene contributes to a living cell! Nontoxigenic and nonpathogenic strains of B. subtilis are widely available and have been safely used in a variety of food applications in industry. B. subtilis spores are used to clean toilets of the German Autobahn (http://www.noblebio.com)! Moreover, the bacterium has been engineered for the production of fine chemicals and enzymes such as vitamins and proteases, respectively (8). Given the fact that B. subtilis has been intensively studied over the past 183 years, the bacterium belongs to the best-understood organisms that are available on earth! Some people even believe that B. subtilis is endowed with the highest bacterial IQ (9)! Finally, - and this fact is very important for our project - as a soil bacterium, representatives of B. subtilis are increasingly used in agriculture to promote plant growth and to protect against plant pathogens (10-12).

Figure 1. B. subtilis as a model system to study the interaction between glyphosate and a representative of the soil rhizosphere.

Genomic adaptation of Bacillus subtilis to glyphosate

Glyphosate (N-(phosphonomethyl)glycine) specifically inhibits the 5-enolpyruvyl-shikimate-3-phosphate (EPSP) synthase in plants, fungi, bacteria and archaea (13-16). The EPSP synthase converts phospoenolpyruvate (PEP) and shikimic acid-3-phosphate (S3P) into EPSP, which serves as a precursor for the de novo synthesis of aromatic amino acids tryptophan, tyrosine and phenylalanine (17). Therefore, inhibition of the EPSP synthase by glyphosate results in the depletion of the cellular levels of aromatic amino acids unless they are provided by the environment (13,18-20). Few years after the discovery of the mode of action of glyphosate it has been shown that the aroA gene from enteric bacteria such as Salmonella typhimurium can accumulate mutations, which renders the encoded EPSP synthase insensitive to glyphosate (14). In the meantime, several glyphosate-insensitive EPSP synthase mutant variants have been generated by either random or directed mutagenesis or they have been isolated from glyphosate-resistant organisms (21-35). The structural characterization of the EPSP synthases from Agrobacterium sp. strain CP4 and Escherichia coli revealed that glyphosate targets the PEP binding site and acts as a competitive inhibitor of the enzyme (36,37). EPSP synthases that are insensitive to glyphosate have been used to genetically engineer glyphosate-tolerant crops (38-44).

While the interaction between glyphosate and bacteria like E. coli, Enterobacter and Burkholderia thailandensis has been studied at the transcriptome level (45-47), not much is known about the interaction between weedkiller and the Gram-positive soil bacterium B. subtilis (18). Previous studies revealed that growth of B. subtilis is inhibited by glyphosate due to the inactivation of the EPSP synthase (18,20,48). Moreover, in order to enhance glyphosate resistance in crops, the B. subtilis glycine oxidase has been engineered to improve the degradation of glyphosate to aminomethyl-phosphonic acid and glyoxlate (49). Finally, experimental evidence suggests that the B. subtilis strain Bs-15, which was isolated from a pepper plant is capable of degrading glyphosate (50). However, in this B. subtilis isolate, the glyphosate degradation pathway remains to be identified. The first step in developing a powerful glyphosate detection system using B. subtilis is to assess the potential of the bacteria to adapt to the herbicide at the genome level! For this purpose, we will perform adaptive laboratory experiments (ALE) (51) to assess the potential of B. subtilis to adapt to toxic levels of glyphosate at the genome level. The strains generated by ALE will be analyzed by whole-genome sequencing and reversely engineered in the laboratory to reconstitute the genotypes and phenotypes (Figure 2).

Figure 2. Growth of B. subtilis in the presence of glyphosate may lead to the accumulation of mutations that confer resistance to the weedkiller. The bacteria may also adapt to the weedkiller by differential regulation of gene expression.

Identification of Bacillus subtilis promoters responding to glyphosate

Promoters that are regulated by glyphosate in B. subtilis, will be identified by transcriptome analyses that will be done with the help of Dr. Anja Poehlein and Prof. Dr. Rolf Daniel from the Göttingen Genomics Laboratory. For this purpose, we will cultivate B. subtilis in the absence and in the presence of sublethal amounts of the glyphosate and analyze the transcriptome by performing RNAseq. Genes that are strongly up- and down-regulated are of special interest because the promoters of these genes might be useful for the development of a glyphosate detection system (see Figure 2).

A reporter system for the detection of glyphosate

The reporter system to detect glyphosate will be constructed based on the results of the transcriptome analyses using B. subtilis. The principle of a glyphosate detection system is shown in Figure 3. To allow the detection of glyphosate, we want to fuse a glyphosate-dependent promoter to a gene encoding a transcriptional repressor. The repressor gene should be transcribed in the absence of the weedkiller because the glyphosate-dependent promoter is active. Furthermore, the produced repressor prevents transcription of a reporter gene encoding a fluorescent protein. Therefore, lack fluorescence indicates the absence of glyphosate. By contrast, during growth of the bacteria in the presence of glyphosate, the repressor gene is inactive and the flourescent protein is produced. Therefore, the fluorescence level indicates the presence of glyphosate. Once characterized, the reporter system can also be introduced in B. subtilis that tolerate high amounts of glyphosate (see above).

Figure 3. In the absence of glyphosate, the promoter (P) driving the transcription of the repressor gene is active. The encoded repressor (R) binds to the operator (O) and prevents transcription of the reporter gene. In the presence of glyphosate, the repressor (R) is not synthesized and the RNA polymerase-sigma factor complex (RNAP) can transcribe the reporter gene. The bacteria become fluorescent.

Glyphosate detection by monitoring intraspecies competition

We also want to develop a reporter system for the detection of glyphosate by monitoring intraspecies competition of fluorescently labelled B. subtilis strains that tolerate different amounts of the weedkiller (52). The isolated B. subtilis mutants that grow in the presence of different amounts of glyphosate are perfectly suited to develop a reporter system that is based on intraspecies competition. For labelling of our strains, we will use the genes encoding the blue fluorescent protein mTagBFP, the green fluorescent protein GFP, and the orange fluorescent protein mOrange, which we obtained from the iGEM DNA distribution kit. The detection system is based on an intraspecies competition assay using blue, green and orange B. subtilis strains that are mixed in an 1:1:1 ratio (see Figure 4). The blue, green and orange B. subtilis strains tolerate different amounts of glyphosate. Therefore, in the absence of glyphosate, we expect that all strains survive in a liquid culture. By contrast, during growth in the presence of glyphosate only those cells survive that tolerate high amounts of the weedkiller. Thus, the ratio of the fluorescently labelled strains after cultivation tells us about the amount of glyphosate that was present in the culture. The intraspecies competition assay may also be conducted using B. subtilis strains that are labelled with other reporter genes (e.g. lacZ).

Figure 4. The glyphosate detection system the is based on intraspecies competition. A mixture of spores of fluorescently labelled B. subtilis strains that tolerate different amounts of glyphosate are co-cultivated with medium supplemented with different amounts of the weedkiller. In the absence of glyphosate, all strains grow equally. At low levels of glyphosate, all cell types will survive but more of the cells that are resistant to the weedkiller are present after co-cultivation. In the presence of high amounts of glyphosate, only the resistant cells will survive and outcompete the non-resistant cells.

Engineering Bacillus subtilis to disarm glyphosate

Many years ago it has been observed that some bacteria, which were isolated from glyphosate contaminated soil, are capable of degrading the weedkiller (53). It has also been found that glyphosate can be inactivated by covalent modification such as phosphorylation (54,55) and acetylation (56). For instance, the glyphosate N-acetyltransferase GAT from the Gram-positive soil bacterium Bacillus licheniformis transfers the acetyl group from acetyl-CoA onto the amino group of the weedkiller (Figure 5) (56). The N-acetylated form of glyphosate does not inhibit the EPSP synthase (see above). The GAT was also subjected to directed evolution for creating an enzyme with higher efficiency and increased specificity for the herbicide (57,58). Therefore, bacteria like B. subtilis expressing the GAT should tolerate high amounts of glyphosate even though it is taken up from the environment. Furthermore, it has been observed that bacteria can become resistant to glyphosate by the accumulation of mutations in the EPSP synthase gene (see above). For instance, it has been reported that mutations in the aroA gene of Salmonella typhimurium render the encoded EPSP synthase insensitive to glyphosate (14). It has also been shown that the EPSP synthase from E. coli can become insensitive to glyphosate. For instance, a mutant variant of the E. coli EPSP synthase in which the proline at position 101 is replaced by leucine decreased the inhibitor potency of glyphosate (18). Although the proline residue at position 101 is not directly involved in glyphosate binding, any mutation at this site seem to result in a structural change in the weedkiller-binding site, thereby rendering the EPSP synthase less sensitive to glyphosate (30). The replacements of glycine by alanine and alanine by threonine at the positions 96 and 183, respectively, in the EPSP synthase also confer glyphosate insensitivity to the enzyme (59). The individual overproduction of the Gat and the AroA(G96A A183T) enzymes may significantly increase glyphosate tolerance of B. subtilis. Moreover, co-overproduction of the enzymes may synergistically increase glyphosate tolerance. In this part of the project, we engineer B. subtilis to improve our reporter systems to allow the detection of high amounts of glyphosate. Currently, we are working on the integration of the gat and the aroA(G96A A183T) genes into the genome of B. subtilis.

Figure 5. The glyphosate N-acetyltransferase GAT from B. licheniformis (PDBid: 2BSW) converts Acetyl-CoA and the toxic herbicide to N-acetylglyphosate, which is not toxic (56,60). The AroA Pro101Leu mutant variant from E. coli (PDBid: 2QFU) is less sensitive to inhibition by glyphosate (30).


References

  1. Ehrenberg (1835) Akademie der Wissenschaften zu Berlin. pp. 145-336.
  2. Kunst et al. (1997) Nature 390: 249-256.
  3. Barbe et al. (2009) Microbiology 155: 1758-1775.
  4. Zhu & Stülke (2018) Nucleic Acids Res. 46: D743-748.
  5. Horneck et al. (2010) Microbiol. Mol. Biol. Rev. 74: 121-156.
  6. Juhas et al. (2014) Microbiology 160: 2341-2351.
  7. Reuß et al. (2016) Microbiol. Mol. Biol. Rev. 80: 955-987.
  8. Hohmann et al. (2016) Wiley- VCH Verlag GmbH & Co. KGaA; 2016:221-297.
  9. Pinto & Mascher (2016) Curr. Genet. 62: 487-498.
  10. Qiao et al. (2017) BMC Microbio. 17: 131.
  11. Xie et al. (2014) Mol. Plant Microbe Interact. 27: 655-663.
  12. Tahier et al. (2017) Front. Microbiol. 8:171.
  13. Amrhein et al. (1983) FEBS Lett. 157: 191-196.
  14. Comai et al. (1983) Science 221: 370-371.
  15. Schulz et al. (1984) Arch. Microbiol. 137: 121-123
  16. Steinrücken & Amrhein (1980) Biochem. Biophys. Res. Commun. 94: 1207-1212.
  17. Herrmann & Weaver (1999) Annu. Rev. Plant. Physiol. Plant. Mol. Biol. 50: 473-503.
  18. Fischer et al. (1986) J. Bacteriol. 168: 1147-1154
  19. Gresshoff (1979) Aust. J. Plant. Physiol. 6: 177-185.
  20. Majumder et al. (1995) Eur. J. Biochem. 229: 99-106.
  21. Stalker et al. (1985) J. Biol. Chem. 260: 4724-4728.
  22. Sost & Amrhein (1990) Arch. Biochem. Biophys. 282: 433-436.
  23. Padgette et al. (1991) J. Biol. Chem. 266: 22364-22369.
  24. He et al. (2001) Biochim. Biophys. Acta 1568: 1-6.
  25. He et al. (2003) Biosci. Biotechnol. Biochem. 67: 1405-1409.
  26. Bearson et al. (2002) Plant Physiol. 129: 1265-1275.
  27. Eschenburg et al. (2002) Planta 216: 129-135.
  28. Sun et al. (2005) Appl. Envrion. Microbiol. 71: 4771-4776.
  29. Zhou et al. (2006) Plant Physiol. 140: 184-195.
  30. Healy-Fried et al. (2007) J. Biol. Chem. 282: 32949-32955.
  31. Vande Berg et al. (2008) Pest. Manag. Sci. 64: 340-345.
  32. Funke et al. (2009) J. Biol. Chem. 284: 9854-9860.
  33. Tian et al. (2010) Appl. Environ. Microbiol. 76: 6001-6005.
  34. Pollegioni et al. (2011) FEBS J. 278: 2753-2766.
  35. Chekan et al. (2016) MedChemComm. 7: 28-36.
  36. Schönbrunn et al. (2001) Proc. Natl. Acad. Sci. USA 98: 1376-1380.
  37. Funke et al. (2006) Proc. Natl. Acad. Sci. USA. 103: 13010-13015.
  38. Della-Cioppa et al. (1987) Nat. Biotechnol. 5: 579-584.
  39. Padgette et al. (1995) Crop Science 35: 1451-1461.
  40. Barry et al. (1997) U.S. Patent 5633435.
  41. Cao et al. (2012) PLoS One. 7: e38718.
  42. Guo et al. (2015) Front. Plant. Sci. 15: 847.
  43. Zhang et al. (2017) J. Integrative Agriculture 16: 551-558.
  44. Fartyal et al. (2018) Front. Plant. Sci. 13: 144.
  45. Kang et al. (2011) Genome Res. 21: 925-935.
  46. Fei et al. (2013) FEMS Microbiol. Lett. 349: 135-143.
  47. Lu et al. (2013) Mol. Biosyst. 9: 522-530.
  48. Selvapandiyan et al. (1995) FEBS Lett. 374: 253-256.
  49. Pedotti et al. (2009) J. Biol. Chem. 284: 36415-36423.
  50. Yu et al. (2015) Genet. Mol. Res. 14: 14717-14730.
  51. Dragosits & Mattanovich (2013) Microb. Cell Fact. 12: 64.
  52. Stannek et al. (2014) J. Vis. Exp. 18: e51196.
  53. Hove-Jensen et al. (2014) Microbiol. Mol. Biol. Rev. 78: 176-197.
  54. Rao et al. (1983) Antimicrob. Agents Chemother. 24: 689-695.
  55. Penaloza-Vazquez et al. (1995) Appl. Environ. Microbiol. 61: 538-543.
  56. Castle et al. (2004) Science 304: 1151-1154.
  57. Siehl et al. (2005) Pest. Manag. Sci. 61: 235-240.
  58. Siehl et al. (2007) J. Biol. Chem. 282: 11446-11455.
  59. Kahrizi et al. (2007) Plant. Cell Rep. 26: 95-104.
  60. Keenan et al. (2005) Proc. Natl. Acad. Sci. USA 26: 95-104.