(10 intermediate revisions by 4 users not shown) | |||
Line 17: | Line 17: | ||
color: #469789; | color: #469789; | ||
} | } | ||
+ | .card{ | ||
+ | border-top: #469789; | ||
+ | } | ||
+ | .border-3 { | ||
+ | border-width:3px !important; | ||
+ | border-left: none !important; | ||
+ | border-right: none !important; | ||
+ | border-bottom: none !important; | ||
+ | |||
+ | } | ||
+ | .card[class*="border"] { | ||
+ | border: 1px solid #469789; | ||
+ | -webkit-box-shadow: none; | ||
+ | box-shadow: none; | ||
+ | } | ||
</style> | </style> | ||
− | |||
<body data-spy="scroll" data-target="#myScrollspy" data-offset="10"> | <body data-spy="scroll" data-target="#myScrollspy" data-offset="10"> | ||
<div class="container-full"> | <div class="container-full"> | ||
Line 35: | Line 49: | ||
<h2>Background</h2> | <h2>Background</h2> | ||
<p> | <p> | ||
− | Cockroaches are among the most common and obnoxious household pests, they harbor in damp and unsanitary places such as sewers, garbage disposals, kitchens, and bathroom, feed on human’s and pet’s food. Besides its importance as a sign of poor sanitation, cockroaches have been implicated in the transmission of several pathogenic organisms such as <i>E.coli</i> and <i>Salmonella enteritidis</i> which can cause diarrhea, pneumonia and so on | + | Cockroaches are among the most common and obnoxious household pests, they harbor in damp and unsanitary places such as sewers, garbage disposals, kitchens, and bathroom, feed on human’s and pet’s food. Besides its importance as a sign of poor sanitation, cockroaches have been implicated in the transmission of several pathogenic organisms such as <i>E.coli</i> and <i>Salmonella enteritidis</i> which can cause diarrhea, pneumonia and so on<sup>[1]</sup>. Also, expose to cockroach feces and body parts of dead roaches over time can trigger allergies and asthma<sup>[2]</sup>. So it’s not safe to ignore these pests. |
− | + | ||
</p> | </p> | ||
Line 57: | Line 70: | ||
</div> | </div> | ||
<div class="row"> | <div class="row"> | ||
− | <div class=" | + | <div class="col-lg-4 col-md-10"> |
− | <div class="card text-center"> | + | <div class="card text-center border-3 shadow h-100"> |
<div class="view text-center"> | <div class="view text-center"> | ||
<img class="card-img-top" style="width: 80px;" src="https://static.igem.org/mediawiki/2018/2/2a/T--SZU-China--Descrip1.png" /> | <img class="card-img-top" style="width: 80px;" src="https://static.igem.org/mediawiki/2018/2/2a/T--SZU-China--Descrip1.png" /> | ||
Line 70: | Line 83: | ||
</div> | </div> | ||
</div> | </div> | ||
− | <div class="card"> | + | </div> |
− | <div class="view text-center"> | + | <div class="col-lg-4 col-md-10"> |
+ | <div class="card border-3 shadow h-100"> | ||
+ | <div class="view text-center "> | ||
<img class="card-img-top" style="width: 128px;" src="https://static.igem.org/mediawiki/2018/8/85/T--SZU-China--Descrip2.png" /> | <img class="card-img-top" style="width: 128px;" src="https://static.igem.org/mediawiki/2018/8/85/T--SZU-China--Descrip2.png" /> | ||
Line 84: | Line 99: | ||
</div> | </div> | ||
</div> | </div> | ||
− | <div class="card"> | + | </div> |
+ | <div class="col-lg-4 col-md-10"> | ||
+ | <div class="card border-3 shadow h-100"> | ||
<div class="view text-center"> | <div class="view text-center"> | ||
<img class="card-img-top" style="width: 120px;" src="https://static.igem.org/mediawiki/2018/c/cc/T--SZU-China--Descrip3.png" /> | <img class="card-img-top" style="width: 120px;" src="https://static.igem.org/mediawiki/2018/c/cc/T--SZU-China--Descrip3.png" /> | ||
Line 98: | Line 115: | ||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
</div> | </div> | ||
</div> | </div> | ||
+ | |||
<div class="indent"> | <div class="indent"> | ||
Line 105: | Line 124: | ||
<p> | <p> | ||
Then, we design a trap box named GreenGround to bring our idea into real world. We mix spores,banana powder and oil together to form emulsifiable powder,which is applied to non-woven fabrics for use. | Then, we design a trap box named GreenGround to bring our idea into real world. We mix spores,banana powder and oil together to form emulsifiable powder,which is applied to non-woven fabrics for use. | ||
+ | (<a style=" color: #469789;" href="https://2018.igem.org/Team:SZU-China/Applied_Design">Click, and check more details about our box</a>) | ||
</p> | </p> | ||
Line 112: | Line 132: | ||
<p> | <p> | ||
We built a safety mechanism for our system. It consists of a tryptophan attenuator and a MazF venom protein. In the cultivating and cockroaches environment, the Tryptophan attenuator makes a difference that stops the translation before MazF, and then the fungi can keep alive. If the fungi abscise the environment we mention above, the Tryptophan attenuator would not work and the MazF expresses to make them die quickly.<sup>[4]</sup> | We built a safety mechanism for our system. It consists of a tryptophan attenuator and a MazF venom protein. In the cultivating and cockroaches environment, the Tryptophan attenuator makes a difference that stops the translation before MazF, and then the fungi can keep alive. If the fungi abscise the environment we mention above, the Tryptophan attenuator would not work and the MazF expresses to make them die quickly.<sup>[4]</sup> | ||
+ | (<a style=" color: #469789;" href="https://2018.igem.org/Team:SZU-China/Design">Click and check ‘How to ensure safety’ for more details</a>) | ||
</p> | </p> | ||
</div> | </div> | ||
− | <div id=" | + | <div id="References" class="indent"> |
− | <h2> | + | <h2>References</h2> |
<p> | <p> | ||
[1] Mpuchane S, Matsheka IM, Gashe BA, Allotey J, Murindamombe G, Mrema N. Microbiological studies of cockroaches from three localities in Gaborone, Botswana. Afr J Food Nutr Sci. 2006;6:56–59. | [1] Mpuchane S, Matsheka IM, Gashe BA, Allotey J, Murindamombe G, Mrema N. Microbiological studies of cockroaches from three localities in Gaborone, Botswana. Afr J Food Nutr Sci. 2006;6:56–59. | ||
Line 142: | Line 163: | ||
<a class="nav-link" href="#solution">Our solution</a> | <a class="nav-link" href="#solution">Our solution</a> | ||
<a class="nav-link" href="#Suicide">Suicide switch</a> | <a class="nav-link" href="#Suicide">Suicide switch</a> | ||
− | <a class="nav-link" href="# | + | <a class="nav-link" href="#References">References</a> |
</nav> | </nav> |
Latest revision as of 22:09, 17 October 2018
Description
Background
Cockroaches are among the most common and obnoxious household pests, they harbor in damp and unsanitary places such as sewers, garbage disposals, kitchens, and bathroom, feed on human’s and pet’s food. Besides its importance as a sign of poor sanitation, cockroaches have been implicated in the transmission of several pathogenic organisms such as E.coli and Salmonella enteritidis which can cause diarrhea, pneumonia and so on[1]. Also, expose to cockroach feces and body parts of dead roaches over time can trigger allergies and asthma[2]. So it’s not safe to ignore these pests.
Current solution
People rack their brains about cockroach control. Currently, there are two mainstream ways to control the population of cockroaches, physical and chemical methods. However, a chemical method like foggers, boric acid, and gel bait may cause environmental toxicity and the development of resistance in cockroaches[3]. A physical method such as “cockroach house”, only trap few cockroaches. Neither chemical nor physical method can’t achieve the goal of environment-friendly and efficient control.
Our solution
This year’s SZU China team want to tackle the cockroach control issue by using synthetic biology. We choose a kind of entomogenous fungi, Metarhizium anisopliae , as biological chassis. It is considered a safe and prospective choice for causing disease in insects only. But its lethality is still needed to be improved, which limits it's widespread used. We construct a system to enhance its virulence. Our system contains three parts: HsbA, BbChit, and MCL1. These three genes work sequentially during infecting cockroach, promote adhesion, penetration, and immune-avoidance respectively.
HsbA
It encodes hydrophobic surface binding protein A, located on the surface of fungus. This protein works like “glue” by forming a hydrophobic bond between spores and the waxy epicuticle of their host.
Bbchit
It encodes chitinase, which can hydrolyze chitin. Chitosan is the major part of the insect body wall, chitinase can hydrolyze this to penetrate.
MCL1
It encodes a collagen-like protein, which can combine with β-glucan.β-glucan is distributed on the cell wall surface of fungus and is the recognization site for insect hemocytes to combine and clear invader. MCL1 acts like putting an “invisible cloak” on the fungus. so that fungus can evade being recognized by the host immune system.
Then, we design a trap box named GreenGround to bring our idea into real world. We mix spores,banana powder and oil together to form emulsifiable powder,which is applied to non-woven fabrics for use. (Click, and check more details about our box)
Suicide switch
We built a safety mechanism for our system. It consists of a tryptophan attenuator and a MazF venom protein. In the cultivating and cockroaches environment, the Tryptophan attenuator makes a difference that stops the translation before MazF, and then the fungi can keep alive. If the fungi abscise the environment we mention above, the Tryptophan attenuator would not work and the MazF expresses to make them die quickly.[4] (Click and check ‘How to ensure safety’ for more details)
References
[1] Mpuchane S, Matsheka IM, Gashe BA, Allotey J, Murindamombe G, Mrema N. Microbiological studies of cockroaches from three localities in Gaborone, Botswana. Afr J Food Nutr Sci. 2006;6:56–59.
[2] Gore JC, Schal C,Cockroach allergen biology and mitigation in the indoor environment. Annu Rev Entomol. 2007; 52():439-63.
[3] Wu X, Appel AG.J Econ Entomol. 2017 Jun 1;110(3):1203-1209.
[4] Sowa S M, Keeley L L. Free amino acids in the hemolymph of the cockroach, Blaberus discoidalis[J]. Comparative Biochemistry & Physiology Part A Physiology, 1996, 113(2):131.