Difference between revisions of "Team:Nanjing-China/Background"

m
 
(22 intermediate revisions by the same user not shown)
Line 17: Line 17:
 
font-family: "Comic Sans MS", cursive;
 
font-family: "Comic Sans MS", cursive;
 
}
 
}
 +
#HQ_page #reference li{text-align:left; font-size:90%;}
 +
#HQ_page .word-note p{ text-align:center; font-size:85%; }
 +
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 84: Line 87:
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
<div class="sub">
 
      <ul> <li><a href="https://2018.igem.org/Team:Nanjing-China">Introduction</a></li></div>
 
 
       <div class="sub">
 
       <div class="sub">
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li></ul></div>
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li></ul></div>
 
             <ul>
 
             <ul>
     <li><a href="#definition">definition</a></li>
+
     <li><a href="#b">Background</a></li>
  <li><a href="#method">method</a></li>
+
             <li><a href="#reference">References</a></li></ul>
            <li><a href="#choose">choose</a></li>
+
            <li><a href="#principle">principle</a></li>
+
             <li><a href="#whole">whole</a></li></ul>
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judges</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
  <div id="menu">
+
<div id="menu" >
    <ul>  
+
        <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">HOME</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font> CHASER</a>
 +
    <ul>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges">For_Judges</a></li>
 +
</ul>
 +
    </li>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">PROJECT</a>
 
     <ul>
 
     <ul>
        <li><a href="https://2018.igem.org/Team:Nanjing-China">Introduction</a></li>
 
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
</ul>
 
</ul>
    </li>
+
        </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
 
         <ul>
 
         <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part"><font size="-1">Composite_Part</font></a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
 
</ul>
 
</ul>
 
             </li>
 
             </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">JUDGE</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
    <ul>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">Bronze</a></li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Sliver">Sliver</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Gold">Gold</a></li>
+
</ul>
+
 
       </li>
 
       </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">PROJECT</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <ul>
 
     <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Device">Device</a></li>
+
</ul>
+
        </li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">TEAM</a>
+
    <ul>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Introduction</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
</ul>
+
    </li>
+
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">OTHERS</a>
+
    <ul>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">HP</a></li>
+
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
+
 
+
 
</ul>
 
</ul>
 
     </li>
 
     </li>
 +
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
 
   </div>
 
   </div>
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/f/f3/T--Nanjing-China--title-1-1.png" width="100%" >
+
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
 
</div>  
 
</div>  
 
   <div class="contain">
 
   <div class="contain">
    <div class="word"  id="definition">
+
  <div class="word">
    <h2>The definition of nitrogen fixation</h2>
+
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
    <div class="word-2">
+
    <img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--PROJECT-b.jpg" width="55%" /></div>
    <h3>•What is nitrogen fixation?</h3>
+
     <div class="word-1" style="height:20px;"></div>
  <p align="left"><font color="#FF9900"> Nitrogen → ammonia&nbsp;(NH<sub>3</sub>)</font>  or other molecules available to living organisms. </p>
+
        <div><img src="https://static.igem.org/mediawiki/2018/1/17/T--Nanjing-China--i-background-1.png" width="80%" /></div>
+
</div>
+
<div class="word-2">
+
    <div><img src="https://static.igem.org/mediawiki/2018/2/2a/T--Nanjing-China--i-background-2.png" width="50%" /></div>
+
    <h2>What is nitrogen fixation for?</h2>
+
        <p align="left"> <font color="#339900">-global food supply <br/>   
+
-reduce the use of chemical nitrogen fertilizers </font> </p> 
+
</div>
+
     <div class="word-1"><div class="word-background-block" style="width:100%;">   </div>
+
    <h4>Nitrogen fixation is essential for life. </h4>
+
 
     </div>
 
     </div>
     </div>
+
     <div class="word" id="b" >
        <div class="word" id="method">
+
    <p>This year, our team Nanjing-China is aimed at nitrogen fixation. Nitrogen fixation is the process that coverts free nitrogen into compound form. </p>
  <h2>The methods of nitrogem fixation</h2>
+
<div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/1/17/T--Nanjing-China--i-background-1.png" width="40%" />
    <div class="word-2"><img src="https://static.igem.org/mediawiki/2018/9/9c/T--Nanjing-China--i-background-3.gif" width="80%" /></div>
+
     <p>Fig.1</p></div>
    <div class="word-2">
+
     <div class="word-1"><p>It is generally  known that free nitrogen makes up 78%, a large proportion, of the air. But the inertia of nitrogen makes it difficult to react with other substances. Besides, only when this indispensable element exists in compound form, can it be utilized easily by most of the living beings. Fixed nitrogen plays a crucial part in food supply around the world. Fixation of nitrogen in vitro, Haber-Bosch process in other words, requires massive use of fuels, for it will only occur in the presence of enough energy. In urgent need of it, plants and crops have  been too dependent on the use, which turns out to be abuse nowadays, of fertilizers. All these overuse has led to harsh problems not only constraining the ecological development but also affecting the environment of the whole world harmfully. However, biological conversion of gaseous nitrogen to ammonia as a natural and spontaneous reaction in vivo allows us a brand new angle to look into, a more feasible way of nitrogen fixation. </p>
    <h3>Nitrogen cycle</h3>
+
</div>
     <p align="left"><font color="#FF6600">•Nitrogen fixation:</font><br/>
+
<div class="word-note" align="center">   <img src="https://static.igem.org/mediawiki/2018/2/20/T--Nanjing-China--i-background-5.png" width="90%" />
          —N<sub>2 </sub>→ plants by bacteria<br/>
+
         <p>Fig.2</p></div>
    <font color="#FF6600">•Nitrification:</font><br/>
+
         <p>Various  ways are discovered to fix nitrogen in numerous strains. Because pathways that  generate high-energy electrons are evolved to be in their metabolism system. What&rsquo;s more, plants cannot fix nitrogen as they do to carbon for lack of an efficient enzyme system, nitrogenase. But some microorganisms do. Together, the energy in these electrons can be utilized by nitrogenase to convert free nitrogen into  ammonia. </p>
      —ammonium → nitrite  → nitrate<br/>
+
<div class="word-note" align="center">  
      —Absorbed by plants<br/>
+
      <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/f/f5/T--Nanjing-China--i-background-6.png" height="250px;" /></div>
    <font color="#FF6600">•Denitrification:</font><br/>
+
   <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--i-background-7.png" height="250px;"/></div>
      —Release N to atmosphere</p>
+
   <div class="word-3" ><img src="https://static.igem.org/mediawiki/2018/f/f0/T--Nanjing-China--i-background-8.png" height="250px;" /></div>
<div class="word-background-block" style="height:180px"></div>
+
        <p>Fig.3</p></div>
  </div>
+
   <div class="word-background-block" style="height:20xp;"></div>
      <div class="word-2">
+
  <p>Nitrogenase is a huge system varied by the essential metallic co-enzyme, it requires such as Mo-Fe, V-Fe and Fe nitrogenase. Wherein, Mo-Fe nitrogenase is better understood than other types. Therefore, in our project, we choose the best known to perform the needed reaction.</p>
     <div class="word-background-block" style="height:80px; width:100%;"></div>
+
<p>Meanwhile, the gene clusters that coded nitrogenase are different in distinct species. It is reported by previous studies that there is a small nitrogen fixation gene cluster consisting of nine relative genes from <em>Paenibacillus</em>. It is quite simple and has proved functional after being transferred into <Em>E. coli</Em> cells, besides its expression does not lead to obvious negative feedback regulation.
    <h3>Haber-Bosch process </h3>
+
</p>
    <p align="left"><font color="#FF6600">N2 + 3H<sub>2</sub> → 2NH<sub>3</sub></font>(ΔH° = −91.8 kJ)<br/>
+
<div class="word-note" align="center">   
    <font color="#FF6600">High temperature<br/>
+
High pressure<br />
+
Need too much energy<br /></font><br/>
+
                        </p>
+
  </div>
+
    <div class="word-2"><img src="https://static.igem.org/mediawiki/2018/9/9c/T--Nanjing-China--i-background-4.gif" width="80%" /></div>
+
  <div class="word-background-block"></div>
+
  <h3>Biological nitrogen fixation</h3>
+
    <div class="word-2" style="width:60%"><img src="https://static.igem.org/mediawiki/2018/2/20/T--Nanjing-China--i-background-5.png" width="90%" /></div>
+
        <div class="word-2" style="width:40%" align="left">
+
         <p><font color="#CC66FF">Mild reaction conditions</font></p>
+
        <p><font color="#0033CC">Relatively inexpensive</font></p>
+
         <p><font color="#996600">High efficiency </font></p>
+
        <p><font color="#0099FF">Environmentally friendly</font></p>
+
        <div class="word-background-block"></div>
+
        </div>
+
  </div>
+
  <div class="word" id="choose">
+
      <h2>The choose of nitrogenase</h2>
+
  <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/f/f5/T--Nanjing-China--i-background-6.png" width="90%" />
+
  <p>Molybdenum <br />(MoFe)-dependent</p></div>
+
   <div class="word-3"><img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--i-background-7.png" width="90%" />
+
  <p>Vanadium <br />(VFe)-dependent</p></div>
+
   <div class="word-3" ><img src="https://static.igem.org/mediawiki/2018/f/f0/T--Nanjing-China--i-background-8.png" width="85%" />
+
  <p>Iron-only  <br />(FeFe)-dependent</p></div>
+
   <div class="word-background-block"></div><h4>MoFe has been studied extensively</h4>
+
  <div class="word-background-block"></div><h3>Nitrogen Fixation Gene Cluster </h3>
+
 
   <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Nanjing-China--i-background-9.png" width="85%" />
 
   <img src="https://static.igem.org/mediawiki/2018/d/d5/T--Nanjing-China--i-background-9.png" width="85%" />
   <h4>The minimal nif genes required for nitrogen fixation.</h4>
+
   <p>Fig.4</p></div>
  </div>
+
   <div class="word-background-block" style="height:20px;"></div>
   <div class="word" id="principle">
+
<div class="word-note" align="center">  
      <h2>General principle of biological nitrogen fixation </h2>
+
<img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--i-background-10.png" width="80%"/>
    <table width="95%" border="1" cellspacing="1" cellpadding="1">
+
    <p>Fig.5</p></div>
      <tr>
+
    <p>As illustrated in Fig.5 above, nitrogen is fixed by Mo-Fe nitrogenase. Most of the nitrogenase is Mo-dependent, which exists mainly in bacteria and archaea. Such nitrogenase is made up of two components, Mo-Fe protein and Fe protein. At room temperature and atmosphere pressure, it costs at least 16mol ATP to reduce 1 mol nitrogen to ammonia by the nitrogenase. The process marches as high-energy electrons passed by Fe protein to Mo-Fe protein. After the binding to such electrons, Mo-Fe protein is able to reduce free nitrogen. However, the cost of the reaction is not so economical. In 2016, our team established a system to produce hydrogen driven by light which is considerably cost-effective. Inspired by our previous project, this year, we choose to alter ATP with solar energy. </p>
        <td rowspan="2"><font color="#0033CC">01 Hydrolysis of ATP</font></td>
+
<p>There has always been an interest in harvesting the most important renewable energy source, the solar energy, which meanwhile is the hardest to capture. The significant breakthrough reported by Katherine et al. showed that certain semiconductors, cadmium sulfide (CdS) nanocrystals, function to photosensitize the Mo-Fe protein, replacing ATP hydrolysis by light harvesting to obtain electrons for the reduction of N<sub>2</sub> into NH<sub>3</sub>. The results contributed to the development of our system. Lead-specific binding protein is applied to biosynthesize such semiconductors.
        <td width="65%">&nbsp;</td>
+
</p>
        <td rowspan="2"><font color="#0099FF">03 MoFe protein forming complexes with low-potential donor</font></td>
+
<div class="word-note" align="center">  
      </tr>
+
<img src="https://static.igem.org/mediawiki/2018/e/e3/T--Nanjing-China--i-background-11.png" width="80%"/>
      <tr>
+
<p>Fig.6</p></div>
        <td><img src="https://static.igem.org/mediawiki/2018/2/22/T--Nanjing-China--i-background-10.png" width="100%"/><p align="center">Chemical energy (ATP)→Solar energy</p></td>
+
   <p>Herein, we aim to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system consisting of the following elements: (i) a biocompatible and highly efficient light-harvesting inorganic semiconductor; (ii) active engineered <em>E. coli</em> cells as biocatalysts. The engineered <em>E. coli</em> cells, which express nitrogenase as well as have the capability of in situ biosynthesis of CdS nanocrystals for the existence of the surface-displayed heavy lead-specific binding proteins, is developed. Such system is able to reduce N<sub>2</sub> to NH<sub>3</sub> driven by light instead of ATP-hydrolysis with considerably high efficiency. The whole-cell system will be more biocompatible and cost-effective than any other ones.</p>
      </tr>
+
      <tr>
+
        <td><font color="#CCCC00">02 Electron transfer </font></td>
+
        <td width="65%">&nbsp;</td>
+
        <td><font color="#CC00FF">04 Reduce N2 to NH3 </font></td>
+
      </tr>
+
    </table>
+
    <div class="word-background-block"></div>
+
      <table width="95%" border="1" cellspacing="1" cellpadding="1">
+
      <tr>
+
        <td rowspan="2"><font color="#0033CC">01 Receive light signals</font></td>
+
        <td width="65%" >&nbsp;</td>
+
        <td rowspan="2"><font color="#0099FF">03 MoFe protein forming complexes with low-potential donor</font></td>
+
      </tr>
+
      <tr>
+
        <td ><img src="https://static.igem.org/mediawiki/2018/e/e3/T--Nanjing-China--i-background-11.png" width="100%" top="20px"/></td>
+
      </tr>
+
      <tr>
+
        <td><font color="#CCCC00">02 Electron transfer </font></td>
+
        <td width="65%" >&nbsp;</td>
+
        <td><font color="#CC00FF">04 Reduce N2 to NH3 </font></td>
+
      </tr>
+
    </table>
+
    </div>
+
   <div class="word" id="whole">
+
      <h2>The characteristics of whole-cell</h2>
+
  <p><font size="110%" color="#CC6633">The property and advantage of whole-cells</font></p>
+
  <p>•Fast  proliferation to enable large-scale application<br />
+
  •Good  portability to permit on-site monitoring<br />
+
  •Inexpensive  and easy to preserve<br />
+
  •  Intracellular cascade reactions to amplify signals<br/>
+
  •  Excellent specificity, sensitivity and stability</p>
+
 
   </div>
 
   </div>
 +
    <div class="word" id="reference" align="left">
 +
      <h2>References</h2>
 +
      <ol><li>Wang, L., et al., <em>A minimal nitrogen fixation gene cluster  from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia  coli.</em> PLoS Genet, 2013. <strong>9</strong>(10):  p. e1003865.</li>
 +
      <li>Fixen, K.R., et al., <em>Light-driven  carbon dioxide reduction to methane by nitrogenase in a photosynthetic  bacterium.</em> Proc Natl Acad Sci U S A, 2016. <strong>113</strong>(36): p. 10163-7.</li>
 +
        <li>Brown, K.A., et al., <em>Light-driven  dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.</em> Science, 2016. <strong>352</strong>(6284): p. 448-50.</li>
 +
        <li>Kuypers, M.M.M., H.K. Marchant, and B. Kartal, <em>The microbial nitrogen-cycling network.</em> Nat Rev Microbiol, 2018. <strong>16</strong>(5): p.  263-276.</li>
 +
        <li>Wei, W., et al., <em>A  surface-display biohybrid approach to light-driven hydrogen production in air.</em> Sci Adv, 2018. <strong>4</strong>(2): p. eaap9253.</li>
 +
        <li>Howard, J.B. and D.C. Rees, <em>Structural basis of biological nitrogen fixation.</em> Chemical Reviews,  1996. <strong>96</strong>(7): p. 2965-2982.</li>
 +
 +
      </div>
 
   </div>
 
   </div>
 
  <div class="footer">
 
  <div class="footer">
Line 292: Line 221:
 
       </div>
 
       </div>
 
       </div>
 
       </div>
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/a/ad/T--Nanjing-China--footer-1.jpg" width="100%" /></div>
+
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 02:59, 18 October 2018

Nanjing-China2018

This year, our team Nanjing-China is aimed at nitrogen fixation. Nitrogen fixation is the process that coverts free nitrogen into compound form.

Fig.1

It is generally known that free nitrogen makes up 78%, a large proportion, of the air. But the inertia of nitrogen makes it difficult to react with other substances. Besides, only when this indispensable element exists in compound form, can it be utilized easily by most of the living beings. Fixed nitrogen plays a crucial part in food supply around the world. Fixation of nitrogen in vitro, Haber-Bosch process in other words, requires massive use of fuels, for it will only occur in the presence of enough energy. In urgent need of it, plants and crops have been too dependent on the use, which turns out to be abuse nowadays, of fertilizers. All these overuse has led to harsh problems not only constraining the ecological development but also affecting the environment of the whole world harmfully. However, biological conversion of gaseous nitrogen to ammonia as a natural and spontaneous reaction in vivo allows us a brand new angle to look into, a more feasible way of nitrogen fixation.

Fig.2

Various ways are discovered to fix nitrogen in numerous strains. Because pathways that generate high-energy electrons are evolved to be in their metabolism system. What’s more, plants cannot fix nitrogen as they do to carbon for lack of an efficient enzyme system, nitrogenase. But some microorganisms do. Together, the energy in these electrons can be utilized by nitrogenase to convert free nitrogen into ammonia.

Fig.3

Nitrogenase is a huge system varied by the essential metallic co-enzyme, it requires such as Mo-Fe, V-Fe and Fe nitrogenase. Wherein, Mo-Fe nitrogenase is better understood than other types. Therefore, in our project, we choose the best known to perform the needed reaction.

Meanwhile, the gene clusters that coded nitrogenase are different in distinct species. It is reported by previous studies that there is a small nitrogen fixation gene cluster consisting of nine relative genes from Paenibacillus. It is quite simple and has proved functional after being transferred into E. coli cells, besides its expression does not lead to obvious negative feedback regulation.

Fig.4

Fig.5

As illustrated in Fig.5 above, nitrogen is fixed by Mo-Fe nitrogenase. Most of the nitrogenase is Mo-dependent, which exists mainly in bacteria and archaea. Such nitrogenase is made up of two components, Mo-Fe protein and Fe protein. At room temperature and atmosphere pressure, it costs at least 16mol ATP to reduce 1 mol nitrogen to ammonia by the nitrogenase. The process marches as high-energy electrons passed by Fe protein to Mo-Fe protein. After the binding to such electrons, Mo-Fe protein is able to reduce free nitrogen. However, the cost of the reaction is not so economical. In 2016, our team established a system to produce hydrogen driven by light which is considerably cost-effective. Inspired by our previous project, this year, we choose to alter ATP with solar energy.

There has always been an interest in harvesting the most important renewable energy source, the solar energy, which meanwhile is the hardest to capture. The significant breakthrough reported by Katherine et al. showed that certain semiconductors, cadmium sulfide (CdS) nanocrystals, function to photosensitize the Mo-Fe protein, replacing ATP hydrolysis by light harvesting to obtain electrons for the reduction of N2 into NH3. The results contributed to the development of our system. Lead-specific binding protein is applied to biosynthesize such semiconductors.

Fig.6

Herein, we aim to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system consisting of the following elements: (i) a biocompatible and highly efficient light-harvesting inorganic semiconductor; (ii) active engineered E. coli cells as biocatalysts. The engineered E. coli cells, which express nitrogenase as well as have the capability of in situ biosynthesis of CdS nanocrystals for the existence of the surface-displayed heavy lead-specific binding proteins, is developed. Such system is able to reduce N2 to NH3 driven by light instead of ATP-hydrolysis with considerably high efficiency. The whole-cell system will be more biocompatible and cost-effective than any other ones.

References

  1. Wang, L., et al., A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 2013. 9(10): p. e1003865.
  2. Fixen, K.R., et al., Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A, 2016. 113(36): p. 10163-7.
  3. Brown, K.A., et al., Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016. 352(6284): p. 448-50.
  4. Kuypers, M.M.M., H.K. Marchant, and B. Kartal, The microbial nitrogen-cycling network. Nat Rev Microbiol, 2018. 16(5): p. 263-276.
  5. Wei, W., et al., A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv, 2018. 4(2): p. eaap9253.
  6. Howard, J.B. and D.C. Rees, Structural basis of biological nitrogen fixation. Chemical Reviews, 1996. 96(7): p. 2965-2982.