Difference between revisions of "Team:Nanjing-China/Design"

m
 
(16 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<title>Nanjing-China2018</title>
 
<title>Nanjing-China2018</title>
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:design?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:design?action=raw&ctype=text/css" />
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:4?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:1?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
Line 87: Line 87:
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judges</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
 
<div id="menu" >
 
<div id="menu" >
 
         <ul>
 
         <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font>CHASER</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
Line 103: Line 104:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
Line 115: Line 116:
 
</ul>
 
</ul>
 
             </li>
 
             </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a></a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
 
       </li>
 
       </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
Line 121: Line 122:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
</ul>
 
</ul>
 
     </li>
 
     </li>
Line 134: Line 135:
 
     <img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--PROJECT-d.jpg" width="50%" /></div>
 
     <img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--PROJECT-d.jpg" width="50%" /></div>
 
     <div class="word-1" style="height:20px;"></div>
 
     <div class="word-1" style="height:20px;"></div>
 +
    </div>
 +
    <div class="word" id="overview">
 +
<h2>Overview</h2>
 +
      <p>Our design is composed of three parts: biosynthesis of CdS semiconductor, light-driven nitrogen fixation and a light-driven biohybrid reaction device. This system is the expansion of our previous project of hydrogen production (Nanjing-China 2016), and it proves that surface display mechanism is capable of being expanded to a general principle for light-driven biohybrid reactions.</p>
 
     </div>
 
     </div>
 
<div class="word" id="cds">
 
<div class="word" id="cds">
<h2>Biosynthesis of CdS semiconductor</h2>
+
<h2>Biosynthesis of CdS semiconductor on cell surface</h2>
<p>To construct our light-driven system, we first induce the precipitation of CdS semiconductor on the cell membrane. Two plasmids encoding the surface display protein OmpA-PbrR and the nitrogenase are co-transferred into <em>E. coli</em> strain. After Cd<sup>2+</sup> is added into the media, the ions specifically bind to PbrR leading to aggregation of Cd<sup>2+</sup> ions. At last when S<sup>2-</sup> ions are added into the media, <em>E. coli</em> cells form CdS semiconductor on the cell membrane because of the aggregation.</p></div>
+
<p align="left">To construct our light-driven system, we induce the in situ synthesis of CdS semiconductor on the <em>E. coli</em> cell surface. One key element of our system is fused protein OmpA-PbrR. OmpA (Outer membrane  protein A) fixes the protein complex on outer cell membrane while PbrR (lead-specific binding protein) adsorbs Cd<sup>2+</sup> in the environment and further forms CdS  semiconductor on cell surface.</p>
 +
<p> After Cd<sup>2+</sup> ions are added into the culture, the ions specifically bind to PbrR protein contributing to the  aggregation of Cd<sup>2+</sup>. Combining with S<sup>2-</sup> ions in the media, CdS semiconductors are therefore formed on the outer membrane of cells.</p></div>
 
<div class="word">
 
<div class="word">
 
<div  id="design2" style="left:10%; width:80%;">
 
<div  id="design2" style="left:10%; width:80%;">
Line 149: Line 155:
 
<div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div>
 
<div id="Layer18" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/8/8a/T--Nanjing-China--d-2-6.png" width="200" /></div>
 
<div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div>
 
<div id="Layer-all2" style="visibility: visible"><img src="https://static.igem.org/mediawiki/2018/2/29/T--Nanjing-China--d-2-all.png" width="500" /></div>
<div class="play" id="button" onclick="MM_timelinePlay('Timeline2')">play</div>
+
<div id="b">
<div class="stop" id="button" onclick="MM_timelineStop('Timeline2')">stop</div>
+
<div class="play" class="button" onclick="MM_timelinePlay('Timeline2')">play</div>
 +
<div class="stop" class="button" onclick="MM_timelineStop('Timeline2')">stop</div></div>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="word" id="nitrogen">
 
<div class="word" id="nitrogen">
<h2>Light-driven nitrogen fixation in E. coli cells</h2>
+
<h2>Light-driven nitrogen fixation in <em>E. coli</em> cells</h2>
<p>To address the problem of electron transduction, CdS semiconductor  act as semiconductors imitating the photosynthetic system under illumination. It provided excited electrons to <u>a redox mediator methyl viologen (MV) </u>which  then penetrates into <em>E. coli</em> cells  and transfer the electrons to Mo-Fe protein subunit of nitrogenase. Mo-Fe protein then utilizes the energy from these electrons to reduce dinitrogen to ammonia. The semiconductor regains its lost electron from sacrificial electron donors.<br />
+
<p>When the system is exposed in light, electrons of  the CdS semiconductor conduct transit, and CdS provide these excited electrons to the electrons to Mo-Fe protein subunit of nitrogenase. Subsequently, the Mo-Fe protein utilizes the energy from these electrons to reduce N<sub>2</sub>(dinitrogen) to NH<sub>3</sub>(ammonia). Finally, the semiconductor regains its lost electron from sacrificial electron donors.</p>
  As a part of biohybrid system, the PbrR protein bears a high specificity. Our system is supposed to self-repair and can be built with a  rather low cost. This design is of general applications as OmpA protein is only  a surface display machinery for <em>E. coli</em>. <br />
+
  <p>This design is of general applications as OmpA protein is merely a surface display mechanism for&nbsp;<em>E. coli</em>, and PbrR can be  replaced with other proteins with different specificity. </p>
  This part of the system is the expansion of our hydrogen production, and it proves that surface display machinery can be expanded to a general principle for biohybrid photosynthesis.</p>
+
</div>
  </div>
+
 
<div class="word">
 
<div class="word">
 
   <div id="design3" style=" left:10%; width:80%;">
 
   <div id="design3" style=" left:10%; width:80%;">
Line 169: Line 175:
 
<div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div>
 
<div id="Layer27" style="visibility: hidden; left: 370px; top: 97px; height: 103px;"><img src="https://static.igem.org/mediawiki/2018/2/28/T--Nanjing-China--d-3-6.png" width="100" /></div>
 
<div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div>
 
<div id="Layer28" style="visibility: hidden"><img src="https://static.igem.org/mediawiki/2018/1/1d/T--Nanjing-China--d-3-5.png" width="150" /></div>
<div class="play" id="button" onclick="MM_timelinePlay('Timeline3')">play</div>
+
<div id="b2">
<div class="stop" id="button" onclick="MM_timelineStop('Timeline3')">stop</div>
+
<div class="play" class="button" onclick="MM_timelinePlay('Timeline3')">play</div>
 +
<div class="stop" class="button" onclick="MM_timelineStop('Timeline3')">stop</div></div>
 
</div>
 
</div>
 
</div>
 
</div>
 
<div class="word" id="device">
 
<div class="word" id="device">
<h2>Device</h2>
+
<h2>Reaction device</h2>
<p>To apply our system to the real world, we also designed a <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">device</a> consists of 3 modules: incubation module, illumination module and control module.</p></div>
+
<p>We also designed a light-driven biohybrid reaction device to apply our system to practical use. After a few test, we proved our device to be quite practical. <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">(see hardware for more details)</a> </p></div>
 
</div>
 
</div>
 
  <div class="footer">
 
  <div class="footer">

Latest revision as of 03:02, 18 October 2018

Nanjing-China2018

Overview

Our design is composed of three parts: biosynthesis of CdS semiconductor, light-driven nitrogen fixation and a light-driven biohybrid reaction device. This system is the expansion of our previous project of hydrogen production (Nanjing-China 2016), and it proves that surface display mechanism is capable of being expanded to a general principle for light-driven biohybrid reactions.

Biosynthesis of CdS semiconductor on cell surface

To construct our light-driven system, we induce the in situ synthesis of CdS semiconductor on the E. coli cell surface. One key element of our system is fused protein OmpA-PbrR. OmpA (Outer membrane protein A) fixes the protein complex on outer cell membrane while PbrR (lead-specific binding protein) adsorbs Cd2+ in the environment and further forms CdS semiconductor on cell surface.

After Cd2+ ions are added into the culture, the ions specifically bind to PbrR protein contributing to the aggregation of Cd2+. Combining with S2- ions in the media, CdS semiconductors are therefore formed on the outer membrane of cells.

play
stop

Light-driven nitrogen fixation in E. coli cells

When the system is exposed in light, electrons of the CdS semiconductor conduct transit, and CdS provide these excited electrons to the electrons to Mo-Fe protein subunit of nitrogenase. Subsequently, the Mo-Fe protein utilizes the energy from these electrons to reduce N2(dinitrogen) to NH3(ammonia). Finally, the semiconductor regains its lost electron from sacrificial electron donors.

This design is of general applications as OmpA protein is merely a surface display mechanism for E. coli, and PbrR can be replaced with other proteins with different specificity.

play
stop

Reaction device

We also designed a light-driven biohybrid reaction device to apply our system to practical use. After a few test, we proved our device to be quite practical. (see hardware for more details)