Difference between revisions of "Team:Nanjing-China/Demonstrate"

 
(17 intermediate revisions by 2 users not shown)
Line 88: Line 88:
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judge</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
<div id="menu">
+
<div id="menu" >
 
         <ul>
 
         <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font> CHASER</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
Line 104: Line 105:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
Line 114: Line 115:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
  </ul>
+
</ul>
          </li>
+
            </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
 
       </li>
 
       </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
Line 122: Line 123:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
</ul>
 
</ul>
 
     </li>
 
     </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
  </div>
+
  </div>
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)"></div>  
 
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)"></div>  
 
   <div class="contain">
 
   <div class="contain">
Line 134: Line 135:
 
     <img src="https://static.igem.org/mediawiki/2018/4/4a/T--Nanjing-China--PROJECT-dm.png" width="45%" /></div>
 
     <img src="https://static.igem.org/mediawiki/2018/4/4a/T--Nanjing-China--PROJECT-dm.png" width="45%" /></div>
 
     </div>
 
     </div>
     <div class="word" id="överview">
+
     <div class="word" id="overview">
 
       <h2>Overview</h2>
 
       <h2>Overview</h2>
         <p>This year, we found an economic, efficient and environmental-friendly way to utilize nitrogen in the air. Our design consists of three parts: biosynthesis of CdS semiconductor, light-driven nitrogen fixation and reaction device. All three parts have gone through in-depth examination and successfully work out under real conditions.<br />
+
         <p>This year, we found an economic, efficient and environmentally friendly way to utilize solar energy and nitrogen  in the air. Our design consists of three parts: biosynthesis of CdS semiconductor, light-driven nitrogen fixation and reaction device. All three parts have gone through in-depth examination and successfully work out under real conditions.</p>
         The following list exhibits our key achievements in this project.<br />
+
         <p>The following list exhibits our key achievements in this project.<br />
        Constructed and tested engineered <em>E. coli</em> which express nitrogenase and OmpA-PbrR. <br />
+
          •Contributed 9 <a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">basic parts</a>, 1 <a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">composite part</a> and 1 <a href="https://2018.igem.org/Team:Nanjing-China/Improve">improved part</a>. <br />
        Constructed and  tested light-driven system based on OmpA-PbrR protein.<br />
+
          •Constructed<em> E. coli </em>JM109 strain which express nitrogenase and OmpA-PbrR.<br />
        Achieved  light-driven nitrogen fixation.<br />
+
          •Achieve the in situ synthesis of CdS semiconductor.<br />
         Designed a reaction device that cater for our light-driven nitrogen fixation reaction.</p>
+
          •Tested light-driven nitrogen fixation system based on nitrogenase  and OmpA-PbrR. <br />
    </div>
+
         •Designed a reaction device that caters for light-driven biohybrid reaction.</p>
 +
</div>
 
<div class="word" id="cds">       
 
<div class="word" id="cds">       
       <h3>Biosynthesis  of CdS semiconductor</h3>
+
       <h3>Biosynthesis  of CdS semiconductor on cell surface</h3>
       <p>One key element of light-driven system in our design is CdS semiconductor precipitated by the OmpA-PbrR  fused protein. We used TEM-EDX analysis to characterize CdS semiconductor precipitated on E. coli cell. We also determined the maximum concentration of Cd2+ appropriate for strain growth, as well as the amount of CdS  that can be precipitated on cell surface.</p>
+
       <p>One key element of light-driven system in our design is CdS semiconductor precipitated by the OmpA-PbrR fused protein. Its optical band gap and photocatalytic capability is vital for exciting electrons, which is  utilized by nitrogenase. We first determined the maximum concentration of Cd<sup>2+</sup>  appropriate for strain growth. Then we characterized these nanoparticles using  TEM-EDX analysis as well as ICP-MS.</p>
      <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" name="TEX-start" width="90%" /></div>
+
<div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/8/8f/T--Nanjing-China--toxicity.jpg" width="70%" />
      <div class="word-background-block" style="height:30px;"></div>
+
  <p><font size="-1">Figure 1. Cd<sup>2+</sup> toxicity test. Cadmium ions shows no significant toxic effects on both strains.</font></p></div>
      <div class="word-note">
+
        <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Nanjing-China--toxicity-1.jpg" name="tox1" width="40%"  />
+
        <div class="word-background-block" style="width:20px;"></div>
+
        <img src="https://static.igem.org/mediawiki/2018/3/3e/T--Nanjing-China--toxicity-2.jpg" name="tox2" width="40%"  />
+
        </div>
+
 
         <div class="word-background-block" style="height:30px;"></div>
 
         <div class="word-background-block" style="height:30px;"></div>
        <div class="word-note">
+
<div class="word-note" align="center">
        <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" name="ICP-MS" width="70%" /></div>
+
    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" width="70%" />
 +
  <p><font size="-1">Figure 2. Cd<Sup>2+</Sup> absorption test. The introduction of OmpA-PbrR confers the host cell with Cd<sup>2+</sup> absorption capacity.</font></p></div>
 
         <div class="word-background-block" style="height:30px;"></div>
 
         <div class="word-background-block" style="height:30px;"></div>
        <div class="word-note">
+
<div class="word-note" align="center">
        <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" name="UV" width="70%"  /></div>
+
<img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" width="100%" />
 
+
      <p><font size="-1">Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell. (b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd<sup>2+</sup> precipitates on the outer membrane of EJNC in the form of CdS nanoparticles. </font></p></div>
    </div>
+
      <div class="word-background-block" style="height:30px;"></div>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" width="60%" />
 +
      <p><font size="-1">Figure 4.  Characterization of biologically precipitated CdS nanoparticles on the outer  membranes of <em>E. coli</em> cells. The UV-Vis  Spectrum of <em>E. coli</em>/CdS hybrids in  solution demonstrating a band gap at 424 nm.</font></p>
 +
        <div class="word-background-block" style="height:30px;"></div>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/b/be/T--Nanjing-China--Figure_S4.jpg" width="63%" />
 +
      <p><font size="-1">Figure 5. Quantitative comparison of the photoelectrical capacity of in situ biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles  precipitate on the EJNC cells adsorb a photon and transfer an electron to MV<sup>2+</sup>.  </font></p>
 +
</div>
 +
        </div>
 
         <div class="word" id="nit">
 
         <div class="word" id="nit">
       <h3>Light-driven  nitrogen fixation</h3>
+
       <h3>Light-driven  nitrogen fixation in <em>E. coli</em> cells</h3>
         <p>CdS semiconductor generate excited electrons under illumination which are then passed to nitrogenase for nitrogen fixation. We introduce nitrogenase to <em>E.coli</em> to enable it to reduce dinitrogen to ammonia. We conducted QPCR to detect relative transcriptional level of each <em>nif</em> gene. We also plan to optimize the structure of <em>nif </em>gene operon after modeling. Using acetylene reduce assay, we then  verify the activity of nitrogenase in our system.</p>
+
         <p>When exposed in light, CdS semiconductor excites electrons which are then passed to nitrogenase for nitrogen fixation. We introduce nitrogenase to <em>E. coli</em> to enable it to reduce dinitrogen to ammonia. We conducted qRT-PCR to detect relative transcriptional level of each <em>nif</em> gene. We also made a plan to optimize the structure of <em>nif </em>gene operon after <a href="https://2018.igem.org/Team:Nanjing-China/Model">modeling</a>.</p>
      <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/c/cf/T--Nanjing-China--QPCR1.jpg" width="40%" />
+
<div class="word-note" align="center">
       <div class="word-background-block" style="width:20px;"></div>
+
    <img src="https://static.igem.org/mediawiki/2018/4/47/T--Nanjing-China--qRT-PCR.png" width="70%" />
      <img src="https://static.igem.org/mediawiki/2018/d/dc/T--Nanjing-China--QPCR2.jpg" width="40%" /></div>
+
       <p><font size="-1">Figure 6. Expression profiles of each structure gene in the <em>nif</em> cluster that overexpressed in  EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component  genes of the <em>nif</em> cluster are significantly over expressed in EJNC whereas the transcription of these genes are not detected (N.D.) in nondiazotrophic <em>E. coli</em> JM109. </font></p>
 +
</div>
 
         </div>
 
         </div>
 
         <div class="word" id="device">
 
         <div class="word" id="device">
 
       <h3>Reaction  device</h3>
 
       <h3>Reaction  device</h3>
         <p>We designed a light-driven microbe reaction device to apply our system to practical use. After a few test, we proved our device to be quite practical. <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">(see device for more details)</a></p>
+
         <p>We designed a light-driven biohybrid reaction device to apply our system to practical use. After a few test, we proved our device to be quite practical. <a href="https://2018.igem.org/Team:Nanjing-China/Hardware">(see device for more details)</a></p>
 
         <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/c/c2/T--Nanjing-China--device-whole.jpg" width="100%" /></div>
 
         <div class="word-note"><img src="https://static.igem.org/mediawiki/2018/c/c2/T--Nanjing-China--device-whole.jpg" width="100%" /></div>
 
     </div>
 
     </div>
 +
  </div>
 
   </div>
 
   </div>
 
  <div class="footer">
 
  <div class="footer">

Latest revision as of 03:51, 18 October 2018

Nanjing-China2018

Overview

This year, we found an economic, efficient and environmentally friendly way to utilize solar energy and nitrogen in the air. Our design consists of three parts: biosynthesis of CdS semiconductor, light-driven nitrogen fixation and reaction device. All three parts have gone through in-depth examination and successfully work out under real conditions.

The following list exhibits our key achievements in this project.
•Contributed 9 basic parts, 1 composite part and 1 improved part.
•Constructed E. coli JM109 strain which express nitrogenase and OmpA-PbrR.
•Achieve the in situ synthesis of CdS semiconductor.
•Tested light-driven nitrogen fixation system based on nitrogenase and OmpA-PbrR.
•Designed a reaction device that caters for light-driven biohybrid reaction.

Biosynthesis of CdS semiconductor on cell surface

One key element of light-driven system in our design is CdS semiconductor precipitated by the OmpA-PbrR fused protein. Its optical band gap and photocatalytic capability is vital for exciting electrons, which is utilized by nitrogenase. We first determined the maximum concentration of Cd2+ appropriate for strain growth. Then we characterized these nanoparticles using TEM-EDX analysis as well as ICP-MS.

Figure 1. Cd2+ toxicity test. Cadmium ions shows no significant toxic effects on both strains.

Figure 2. Cd2+ absorption test. The introduction of OmpA-PbrR confers the host cell with Cd2+ absorption capacity.

Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell. (b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd2+ precipitates on the outer membrane of EJNC in the form of CdS nanoparticles.

Figure 4. Characterization of biologically precipitated CdS nanoparticles on the outer membranes of E. coli cells. The UV-Vis Spectrum of E. coli/CdS hybrids in solution demonstrating a band gap at 424 nm.

Figure 5. Quantitative comparison of the photoelectrical capacity of in situ biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles precipitate on the EJNC cells adsorb a photon and transfer an electron to MV2+

Light-driven nitrogen fixation in E. coli cells

When exposed in light, CdS semiconductor excites electrons which are then passed to nitrogenase for nitrogen fixation. We introduce nitrogenase to E. coli to enable it to reduce dinitrogen to ammonia. We conducted qRT-PCR to detect relative transcriptional level of each nif gene. We also made a plan to optimize the structure of nif gene operon after modeling.

Figure 6. Expression profiles of each structure gene in the nif cluster that overexpressed in EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component genes of the nif cluster are significantly over expressed in EJNC whereas the transcription of these genes are not detected (N.D.) in nondiazotrophic E. coli JM109.

Reaction device

We designed a light-driven biohybrid reaction device to apply our system to practical use. After a few test, we proved our device to be quite practical. (see device for more details)