Difference between revisions of "Team:Nanjing-China/Notebook"

 
(58 intermediate revisions by 2 users not shown)
Line 6: Line 6:
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
 
+
.month_w{ clear:both; overflow:hidden; position:relative;}
 
.word-2{  border-top:rgba(153,153,153,0.6) 4px dotted; }
 
.word-2{  border-top:rgba(153,153,153,0.6) 4px dotted; }
.bottom{ padding:2px; width:10%; alignment-adjust: central; background-color:rgba(51,0,51,0.8); border:rgba(153,153,153,1) 3px groove; border-radius:8px;}
+
.bottom{ padding:2px; width:120px;line-height:46px; height:46px;  alignment-adjust: central; background-color:rgba(255,102,0,0.6); border:rgba(153,153,153,1) 4px groove; border-radius:8px; top:auto; position:relative;}
.bottom-2{  line-height:42px; height: 42px; width:42px; alignment-adjust: central; background-color:rgba(204,204,204,1); border:rgba(153,153,153,1) 2px groove; border-radius:5px;}
+
.bottom-2{  line-height:42px; height: 42px; width:42px; alignment-adjust: central; background-color:rgba(180,180,180,0.5); border:rgba(153,153,153,1) 2px groove; border-radius:5px;}
 
+
#journal .month_w .bottom:hover {
 +
        background-color:rgba(204,51,0,0.6);
 +
        cursor:pointer;
 +
        color: #ffffff;
 +
        border: 3px solid rgba(204,102,0,0.5);
 +
    }
 +
#HQ_page #protocol .t tr{ border-top:#000 2px solid; border-bottom:#000 2px solid; text-align:center;}
 +
#HQ_page #protocol .t td{ border-top:#000 2px solid; border-bottom:#000 2px solid; text-align:center;}
 +
#HQ_page table p{ font-size:85%;}
 +
#HQ_page #protocol p{ text-align:left; }
 +
#HQ_page #protocol h3{ text-align:left; text-decoration:underline; }
 +
#HQ_page #reference ol li{ text-align:left; font-size:90%; }
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 88: Line 99:
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judges</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
<div id="menu">
+
<div id="menu" >
 
         <ul>
 
         <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">People</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font> CHASER</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
Line 104: Line 116:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
Line 114: Line 126:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
  </ul>
+
</ul>
          </li>
+
            </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
 
       </li>
 
       </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">Practices</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
</ul>
 
</ul>
 
     </li>
 
     </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></li>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
  </div>
+
  </div>
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" >
+
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/b/bf/T--Nanjing-China--title-NOTEBOOK.png" width="100%" onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)" >
</div>  
+
</div>
     <div class="contain" align="left">
+
     <div class="contain" >
 
         <div class="word" id="journal"  align="center">
 
         <div class="word" id="journal"  align="center">
<div class="bottom" onclick="MM_effectBlind('may', 1000, '0%', '100%', true);" align="center">MAY</div>
+
        <div class="month_w">
 +
<div class="bottom" onclick="MM_effectBlind('March', 1000, '0%', '100%', true)">March</div></div>
 
<div class="word-background-block" style=" height:10px;"></div>
 
<div class="word-background-block" style=" height:10px;"></div>
<div class="word-1" id="may" style="display:none; overflow:hidden;">
+
<div class="word-1" id="March" style="display:none;">
<div class="bottom-2">1</div>
+
<div class="bottom-2">3</div>
<div class="word-2" style=" border-right:2px #999999 solid;"><p>asdjfha ebfaiup bwfjbsan ;fkjabs jdkf aj;sbdf jnajb fwnlfna;j asdfabf iubwfiub ajsfbsjadaf njaj enfjnas;jfndjs nfj;nfajsn fja;fnwjf ndnf;</p></div>
+
<div class="word-1" style="border-top:rgba(153,153,153,0.6) 4px dotted;" ><div style=" padding:20px;"><p>Our team was founded this week! We met and communicated with each other. Through our team leader’s presentation, we knew iGEM a lot. Each member was assigned his/her mission in the team.</p>
<div class="word-2" style=" border-left:2px #999999 solid; width:49%;"><p>asdjfha ebfaiu pbwfjbsan ;fkjab sjdkf aj;sbdfj najb fwnlfna;j asdfabfi ubwfiubaj sfbsjadaf njajenfjn as;jfndjsn fj;nfajsnf ja;fnwjfndnf;</p></div>
+
<p>We broadly read paper and brainstormed this year’s project. At first we came up with several different ideas, later we reached an agreement that the most interesting and meaningful one was about nitrogen fixation.
 +
</p></div>
 +
</div></div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w">
 +
        <div  class="bottom" onclick="MM_effectBlind('April', 1000, '0%', '100%', true);">April</div></div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="April" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">4</div>
 +
<div class="word-2" style=" border-right:3px #999999 solid;"><div style=" padding:20px;">
 +
  <h4>Human  Practices, Collaboration&amp;Society:</h4>
 +
    <p>We learned about the advancement of nitrogenous fertilizer production in China. In order to better understand the actual demand of nitrogenous fertilizer in agriculture, we decided to visit farmers in Xiaohe Bei Village.</p>
 +
    <p>We distributed brochures about our project at NJU.</p>
 +
<p>Having learned of the dearth of efficient and affordable fertilizer, we spared no effort to seek a cost effective nitrogen fixation method. Inspired by our previous work(Nanjing-China 2016), we creatively proposed an idea of “whole-cell photocatalytic nitrogen fixation”.</p>
 +
<p>We helped Nanjing Forestry University build their team.</p>
 +
<p>We held conferences with Nanjing Agricultural University and China Pharmaceutical University to share experiences of being iGEMers.
 +
</p>
 +
</div></div>
 +
<div class="word-2" style=" border-left:0px #999999 solid; width:49%;"><div style=" padding:20px;">
 +
  <h4>Technical works Wet&amp; Dry labs:</h4>
 +
    <p>Wet Lab: Having confirmed the theme of our project, we began to work on our design. We read latest papers about biological nitrogen fixation, focused on the method sections and discussed what we didn’t understand in details. During the last week of this month, we worked out the first version of our design.</p>
 +
<p>Dry lab: We communicated and exchanged ideas frequently in order to identify possible modeling directions which could provide useful guidance to our wet experiments. Later we proposed a few directions. The idea of developing homologous modeling of nitrogenase didn’t work successfully because we couldn’t get access to relevant software.
 +
</p>
 +
</div></div>
 
</div>
 
</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w"><div class="bottom" onclick="MM_effectBlind('May', 1000, '0%', '100%', true);">May</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="May" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">5</div>
 +
<div class="word-2" style=" border-right:0px #999999 solid;"><div style=" padding:20px;">
 +
  <h4>Human  Practices, Collaboration&amp; Society:</h4>
 +
    <p>We planned to investigate the current production of nitrogenous fertilizer so we prepared interview questions and contacted Yantai Wuzhou Feng Fertilizer Plant. Then we went there, met the manager and were shown around the factories. We communicated with the technical R&D personnel and realized the big challenge we had to overcome before putting our project into practical application.</p>
 +
</div></div>
 +
<div class="word-2" style=" border-left:3px #999999 solid; width:49%;"><div style=" padding:20px;">
 +
  <h4>Technical works Wet&amp; Dry labs:</h4>
 +
  <p>Wet lab: We measured the transcriptional  activity of <em>nif</em> promoter. Then we transformed the plasmid pUC57 containing the  <em>nif</em> cluster and the fusion protein  expression plasmid including <em>E. coli</em> outer membrane protein <em>OmpA</em> and the <em>PbrR</em> protein into <em>E. coli</em> strain JM109. Besides, based on our Human Practice, we modified our design by  adding Cd<sup>2+</sup> toxicity test to it.</p>
 +
</div></div>
 +
</div></div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w">
 +
<div class="bottom" onclick="MM_effectBlind('June', 1000, '0%', '100%', true);" align="center">June</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="June" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">6</div>
 +
<div class="word-1" style="border-top:rgba(153,153,153,0.6) 4px dotted;" >
 +
  <div style=" padding:20px;" align="center">
 +
    <h4>Exam Break</h4>
 +
  </div></div>
 +
</div></div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w">
 +
<div class="bottom" onclick="MM_effectBlind('July', 1000, '0%', '100%', true);" align="center">July</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="July" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">7</div>
 +
<div class="word-2" style=" border-right:0px #999999 solid;">
 +
<div style=" padding:20px;">
 +
  <h4>Human  Practices, Collaboration&amp; Society:</h4>
 +
  <p>We invited Professor Haoqian Zhang and held  a meet up with iGEM teams in Nanjing.</p>
 +
    <p>We were interviewed by Nanjing University  Student Career Guidance Center. The Wechat Push introducing our team was issued  on the public account &ldquo; NJU Employment&rdquo;.</p>
 +
  <p>We borrowed the No.5 plasmid in the  InterLab kit to team AHUT.</p>
 +
</div></div>
 +
<div class="word-2" style=" border-left:3px #999999 solid; width:49%;"><div style=" padding:20px;">
 +
  <h4>Technical works Wet&amp; Dry labs:</h4>
 +
    <p>Wet  lab: We conducted Real-time Quantitative PCR(qPCR). Meanwhile, we conducted Cd<sup>2+</sup> toxicity test and ICP-MS measurement of Cd<sup>2+</sup> adsorption.</p>
 +
    <p>We improved our part to make it easier to operate.</p>
 +
    <p> Dry lab: Enlightened by the different  relative transcriptional levels of each nitrogenase component which was shown in the result of qPCR, we turned our attention to the  complexity of nitrogenase system. We perused literature on the stoichiometry of  nitrogenase components.</p>
 +
</div></div>
 +
</div>
 +
</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w">
 +
<div class="bottom" onclick="MM_effectBlind('August', 1000, '0%', '100%', true);" align="center">August</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="August" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">8</div>
 +
<div class="word-2" style=" border-right:0px #999999 solid;"><div style=" padding:20px;">
 +
  <h4>Human  Practices, Collaboration&amp; Society:</h4>
 +
  <p>We attended the 5th Conference  of China iGEMer Community at Shanghai Tech University to demonstrate our project  to all teams in China and learn from each other.</p>
 +
  <p>We helped Central South University found  team.</p>
 +
    <p>We communicated with two members of iGEM  USTC.</p>
 +
</div></div>
 +
<div class="word-2" style=" border-left:3px #999999 solid; width:49%;"><div style=" padding:20px;">
 +
  <h4>Technical works Wet&amp; Dry labs:</h4>
 +
  <p>Wet  lab: We conducted TEM-EDX analysis and UV-vis scanning. Then we used methyl  viologen to verify the generation of electron. Finally, we successfully biosynthesized  CdS semiconductor which could be excited by visible light to generate  electrons.</p>
 +
    <p>Dry lab: We finally decided to model on the  best stoichiometry of <em>nif</em> gene cluster. We looked through many common algorithms  and figured out two modeling methods. After further comparison, we finally  chose a method similar to greedy algorithm. We drew a flow diagram to describe  the core idea of our method and as a reference for programming. Then we  programmed with python, debugged our code and received the result.</p>
 +
</div></div>
 +
</div>
 +
</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
        <div class="month_w">
 +
<div class="bottom" onclick="MM_effectBlind('September', 1000, '0%', '100%', true);" align="center">September</div>
 +
<div class="word-background-block" style=" height:10px;"></div>
 +
<div class="word-1" id="September" style="display:none; overflow:hidden;">
 +
<div class="bottom-2">9</div>
 +
<div class="word-2" style=" border-right:0px #999999 solid;"><div style=" padding:20px;">
 +
  <h4>Human  Practices, Collaboration&amp; Society:</h4>
 +
  <p>We performed Language project with IIT  Madras and received the finished video a few days later. <br />
 +
    We helped another iGEM team, CSU-China to  establish their team. We issued our Emoji chanllenge on the  official website and received some interesting feedback shortly after that.</p>
 +
</div></div>
 +
<div class="word-2" style=" border-left:3px #999999 solid; width:49%;"><div style=" padding:20px;">
 +
  <h4>Technical works Wet&amp; Dry labs:</h4>
 +
    <p>Wet  lab: Inspired by our Human Practice, we raised an idea of designing a device  for the growth of engineered <em>E.coli</em> strain<em>. </em>First we drew a draft on  paper and then used the software Solid Works to draw a 3D version draft.  Eventually, a real device came out. The device provided a great help to our  further experiments because it provided a suitable place for the engineered  strain to grow.</p>
 +
  <p>Near the end of this month, we performed gas chromatography to detect the amount of acetylene reduced to indirectly test the nitrogen fixation activity of our system. Up to wiki freeze, samples have been sent out and we will receive the result about five days later.
 +
</p>
 +
<p>Dry lab: We refined our model by further reading literature and verifying one of our assumptions. In that way, we got a  more accurate result. This result provided useful guidance to our further  experiments. </p>
 +
</div></div>
 +
</div></div>
 
       </div>
 
       </div>
 
       <div class="word" id="protocol">
 
       <div class="word" id="protocol">
 
         <h2>Protocol</h2>
 
         <h2>Protocol</h2>
         <h3>Medium</h3>
+
         <h3>Plasmids and Bacterial Strains.</h3><p> The bacterial strains, plasmids and primers used in this study are all listed in  Table 1. <em>Escherichia  coli</em>JM109 was purchased from Takara and  designated EJ. A high-copy plasmid, pUC57-<em>nif</em> (pMB1 <em>ori</em>), harboring the minimal nitrogen fixation gene cluster (<em>nif</em>) of <em>Paenibacillus polymyxa</em> CR1 was chemically synthesized and then  transformed into <em>E. coli</em> JM109, and the resulting recombinant was designated EJN. For  construction of the second plasmid, pJQ200SK <em>OmpA/PbrR</em> (with  a compatible p15A <em>ori</em>), a lab store  plasmid pBAD24-<em>OmpA/PbrR</em> was used as  the template to PCR-amplify <em>OmpA/PbrR</em> with P200F and P200R primers. After confirmation by sequencing, the PCR product was digested with <em>Kpn</em> I and <em>Hind</em> III and then insert into  pJQ200SK to yield pJQ200SK-<em>OmpA/PbrR</em>. EJN transformed with pJQ200SK-<em>OmpA/PbrR</em> was selected from LB agar plates containing appropriate antibiotics, and the resulting strain was designated EJNC.</p>
        <p>Nitrogen-deficient medium contained (per liter10.4 g Na2HPO4, 3.4 g KH2PO4, 26 mg CaCl2N 2H2O, 30 mg MgSO4, 0.3 mg MnSO4, 36 mg Ferric citrate, 7.6 mg Na2MoO4·2H2O, 10 mg p-aminobenzoic acid, 5 mg biotin, 4 g glucose as carbon source and 2 mM  glutamate as nitrogen source. Nitrogen-free medium don&rsquo;t contain glutamate.</p>
+
          <h3>Culture  Conditions.</h3>
        <h3> Constraction of plasmid</h3>
+
          <p>LB broth for <em>E. coli</em> JM109 growth contained 10g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract. KPM minimal medium was adopted for all nitrogen  fixation assays and contained per liter 1040 mg Na<sub>2</sub>HPO<sub>4</sub>, 3400 mg KH<sub>2</sub>PO<sub>4</sub>, 26 mg CaCl<sub>2</sub>·2H<sub>2</sub>O, 30 mg MgSO<sub>4</sub>, 7.5 mg Na<sub>2</sub>MoO<sub>4</sub>·2H<sub>2</sub>O, 0.3mg MnSO<sub>4</sub>, 8000 mg glucose, 500 mg casein hydrolysate, 36 mg ferric citrate, 10 mg para-aminobenzoic acid, 5 mg biotin, and 1 mg vitamin  B<sub>1</sub>, supplied with 10 mM (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (KPM-HN) for pregrowth or 10 mM glutamate (KPM-LN) for nitrogenase activity assays.  Antibiotics were supplemented as required at the following concentrations: 100 μg/mL of ampicillin, and 20 μg/mL of gentamycin. </p>
        <h4>Enzyme digestion</h4>
+
          <h3>Quantitative  Real-time PCR. </h3>
          
+
          <p>After harvesting bacteria from  LB medium, purification of total RNA was performed using RNAiso Plus reagent (TaKaRa,  Japan) following the protocol described by the manufacturer. One microgram of  qualified total RNA was subjected to reverse transcription with a PrimeScript  RT reagent Kit with gDNA Eraser per the manufacturer&rsquo;s  instructions (TaKaRa, Japan). qRT-PCR of the  resulting cDNA was performed with gene-specific primers (Table 1) on a CFX  Connect Real-Time PCR Detection System (Bio-Rad, USA) with a SYBR Premix Ex Taq  (Tli RNaseH Plus) Kit (TaKaRa, Japan). Standard curves of cDNA dilutions were used to determine the PCR efficiency. An expression data analysis was performed  by the Pfaffl method of relative quantification using CFX Manager 3.1 software (Bio-Rad, USA).</p>
<table border="1" cellspacing="0" cellpadding="0">
+
          <h3>Nitrogenase  Activity Assay.</h3>
  <tr>
+
          <p>The C<sub>2</sub>H<sub>2</sub> reduction method was used to assay nitrogenase activity. EJNC was initially  grown overnight in KPM-HN medium and then diluted in 2 mL KPM-LN medium in 20  mL sealed tube to a final OD600 of about 0.3.  Air in the tubes was repeatedly evacuated and replaced with argon. After  incubation at 37 °C for 6 to 8  h, 2 mL C<sub>2</sub>H<sub>2</sub> was injected. 1 mL of gas  was sampled from the gas phase 16 h later and analyzed with a GC-7890B  (Agilent, USA) gas chromatograph after appropriate 10-fold serially dilution  with nitrogen. Both EJ and EJN severed as controls. </p>
    <td width="60" valign="top"><p>BamH1</p></td>
+
          <h3>ICP-MS(Inductively Coupled Plasma Mass  Spectrometry) measurement of Cd<sup>2+</sup> adsorption.</h3>
    <td width="60" valign="top"><p>1ul</p></td>
+
          <p><em>Escherichia coli</em> BL21 containing <em>OmpA-PbrR</em>-PJQ200SK (pBAD33) plasmid was cultured in LB medium to an OD<sub>600</sub> of 0.4-0.6.  Arabinose and CdCl<sub>2</sub> were added to the medium to a final arabinose  concentration of 40 μM and a final Cd<sup>2+</sup> concentration of 100 μM, to  induce the formation of CdS nano semiconductors.From  the start of the induction, 5 ml of the bacterial solution was taken from the culture  every 6 hours (sampling to 24 hours), centrifuged at 4000 rpm for 2 minutes,  and washed three times with water to remove the medium involved in the  bacterial surface.The washed bacteria were resuspended in 5 ml of water. OD<sub>600</sub>  was measured, and the bacteria were collected by centrifugation.3 ml of  concentrated nitric acid was added and the mixture was digested overnight at 90  °C.The Cd<sup>2+</sup> content in the sample was measured using ICP-MS.</p>
      </tr>
+
          <h3>Cd<sup>2+</sup> toxicity test.</h3><p>Multiple groups of LB medium were prepared, and  arabinose with a final concentration of 40 μM and different amounts of CdCl<sub>2</sub>  were added to the medium to form a Cd<sup>2+</sup> gradient of 0,150 μM, 300  μM, 600 μM, and 1000 μM.<em>E. coli</em> BL21 containing the <em>OmpA-PbrR</em>-PJQ200SK  (pBAD33) plasmid and plasmid-free <em>E. coli</em> BL21 (control) were cultured  in different media.The OD<sub>600</sub> value was measured every 2 hours and measured for  12 hours.</p>
  <tr>
+
          <h3>Transmission electron  microscopy with energy-dispersive x-ray spectroscopy (TEM-EDX).</h3><p>After the Cd<sup>2+</sup>  adsorption induction was completed, the bacteria were collected by  centrifugation and resuspended in ultrapure water. Samples were sent for TEM  image acquisition.The thick carbon film (20 to 30 nm) on the copper grid was  immersed in the bacteria solution for 1 second before imaging, dried under atmospheric conditions, and then imaged using TEM. At the same time, the EDX  system (EDAX, AMETEK) was attached to the microscope for elemental analysis.  All TEM images were imaged using a JEOL JEM-2100 electron microscope at an acceleration bias of 200 kV.</p>
    <td width="60" valign="top"><p>Kpn1</p></td>
+
          <h3>Characterization of  biologically precipitated CdS nanoparticles</h3> 
    <td width="60" valign="top"><p>1ul</p></td>
+
         <p>The photocatalytic MV<sup>2+</sup>  reduction assay was performed using a 10-mm quartz cuvette with a cap and a  light source(350-W Xe lamp).<em> E.coli </em>cells containing biosynthesized CdS  nanoparticles were harvested from LB medium by centrifugation (4000 rpm for 10  min). The reaction system consisted of the same amounts of different  semiconductors [TiO<sub>2</sub> anatase (<em>10</em>) and synthesized free CdS nanoparticles  (<em>29</em>)] and 3ml of 100 mM tris-HCl(PH 7), 150mM NaCl, 5% glycerol, 100mM  ascorbic acid, and 5mM MV<sup>2+</sup> in the quartz cuvette. O<sub>2</sub> was  removed by bubbling N<sub>2</sub> into the solution for 30 min. The reaction  was initiated by light irradiation and stopped by centrifugation and separation  of <em>E.coli</em>-CdS nanoparticles from the MV buffer. The absorption spectra  were immediately measured after centrifugation (1000<em>g</em> for 1 min). The  amount of reduced MV<sup>2+</sup>(MV<sup>+</sup>) that formed was calculated by  monitoring the OD<sub>605</sub> using the molar conversion coefficient ɛ=1.3 × 10<sup>4</sup>  M<sup>-1</sup> cm<sup>-1</sup>.</p>
      </tr>
+
        <table border="0" cellspacing="0" cellpadding="0" width="0">
  <tr>
+
            <tr class="t">
    <td width="60" valign="top"><p>10*Buffer</p></td>
+
              <td class="t" width="123"><p align="left"><strong>Strains</strong></p></td>
    <td width="60" valign="top"><p>3ul</p></td>
+
              <td class="t" width="406"><p align="center"><strong><em>E.    coli</em></strong></p></td>
      </tr>
+
              <td class="t" width="84"><p align="center"><strong>Source</strong></p></td>
  <tr>
+
            </tr>
    <td width="60" valign="top"><p>plasmid</p></td>
+
            <tr>
    <td width="60" valign="top"><p>20ul</p></td>
+
              <td width="123"><p align="left">EJ</p></td>
      </tr>
+
              <td width="406"><p align="center"><em>E. coli</em> JM109 </p></td>
  <tr>
+
              <td width="84"><p align="center">TaKaRa</p></td>
    <td width="80" valign="top"><p>ddH2O</p></td>
+
            </tr>
    <td width="57" valign="top"><p>3ul</p></td>
+
            <tr>
      </tr>
+
              <td width="123"><p align="left">EJN</p></td>
    </table>
+
              <td width="406"><p align="center"><em>E. coli</em> JM109 harboring plasmid pUC57-<em>nif</em></p></td>
        <p>Total 30ul,  react for at least 5 hours.</p>
+
              <td width="84"><p align="center">This study</p></td>
        <h4>DNA ligation</h4>
+
            </tr>
        <table border="1" cellspacing="0" cellpadding="0">
+
            <tr>
          <tr>
+
              <td width="123"><p align="left">EJNC</p></td>
             <td width="120" valign="top"><p>T4 DNA ligase</p></td>
+
              <td width="406"><p align="center"><em>E. coli</em> JM109 harboring plasmids pUC57-<em>nif and </em>pJQ200SK-OmpA/PbrR</p></td>
             <td width="60" valign="top"><p>1ul</p></td>
+
              <td width="84"><p align="center">This study</p></td>
          </tr>
+
            </tr>
          <tr>
+
            <tr class="t">
             <td valign="top"><p>Ligase buffer</p></td>
+
              <td class="t" width="123"><p align="left"><strong>Plasmids</strong></p></td>
             <td valign="top"><p>2ul</p></td>
+
              <td class="t" width="406"><p align="center"><strong>characteristic</strong><strong> </strong></p></td>
          </tr>
+
              <td class="t" width="84"><p align="center"><strong>Source</strong></p></td>
          <tr>
+
            </tr>
             <td valign="top"><p>Inset</p></td>
+
            <tr>
             <td valign="top"><p>14ul</p></td>
+
              <td width="123"><p align="left">pUC57</p></td>
          </tr>
+
              <td width="406"><p align="center">Cloning    vector; pMB1 <em>ori</em>; Ampr</p></td>
          <tr>
+
              <td width="84"><p align="center">Lab store</p></td>
             <td valign="top"><p>vector</p></td>
+
            </tr>
             <td valign="top"><p>2ul</p></td>
+
            <tr>
          </tr>
+
              <td width="123"><p align="left">pUC57-<em>nif</em></p></td>
 +
              <td width="406"><p align="center">pUC57    with <em>nif</em>; pMB1 <em>ori</em>; Ampr</p></td>
 +
              <td width="84"><p align="center">Chemically synthesized</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">pJQ200SK</p></td>
 +
              <td width="406"><p align="center">Cloning    vector;p15A <em>ori</em>; Gmr</p></td>
 +
              <td width="84"><p align="center">Lab store</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">pJQ200SK-<em>OmpA/PbrR</em></p></td>
 +
              <td width="406"><p align="center">pJQ200SK    with<em> OmpA/PbrR</em>; p15A <em>ori</em>; Gmr</p></td>
 +
              <td width="84"><p align="center">This study</p></td>
 +
            </tr>
 +
            <tr class="t">
 +
              <td class="t" width="123"><p align="left"><strong>PCR Primers</strong></p></td>
 +
              <td class="t" width="406"><p align="center"><strong>sequence</strong><strong> </td>
 +
              <td class="t" width="84"><p align="center"><strong>Amplicon</strong></p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">P200F</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-GCTCTAGACATGAAAAAGACAGCTATCGCGA</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>OmpA/PbrR </em></p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">P200R</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TCCCCCGGGTCAGATCTTATCGTCGTCATC</p></td>
 +
            </tr>
 +
             <tr class="t">
 +
              <td class="t" width="123"><p align="left"><strong>qRT-PCR </strong><strong>Primers</strong></p></td>
 +
              <td class="t" width="406"><p align="center"><strong>sequence</strong><strong> </strong></p></td>
 +
              <td class="t" width="84"><p align="center"><strong>Amplicon</strong></p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifBF </p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TCGGCCGTGCCAAGGAATTT</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifB</em>for  qRT-PCR</p></td>
 +
            </tr>
 +
 
 +
            <tr>
 +
              <td width="123"><p align="left">QnifBR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-CCTATGCCGGACGACAGCAG</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifHF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TGCGCCGTATGACCGTTACC</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifH</em> for  qRT-PCR</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifHR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-CCGGACGCCTCAGCTTTGTT</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifDF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-GCCCGACCAAGACGATGGAG</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifD</em> for  qRT-PCR</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifDR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-CCGCAGTCCGCCAATCAGAA</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifKF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ACCTGAAGTTCGCGGCCAAA</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifK</em> for  qRT-PCR</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifKR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ATCCGGAGCCTGCTCTTCCA</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifEF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TGCGGCAGATGGCTTACCTG</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifE</em> for  qRT-PCR</p></td>
 +
             </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifER</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-AGCACTGCCCGCTTTCCTTT</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifNF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TCGAGAGCCGATTGCCGTTC</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifN</em> for  qRT-PCR</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifNR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ATCCAGCGCCTCCTCCAGAT</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifXF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-CGACGGAAGACGGTGTGCAT</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifX</em> for  qRT-PCR</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifXR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TCCAGGAACTGGACGCCTGA</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifVF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-TGGGCGCTGACCATTCGTTT</p></td>
 +
              <td width="84" rowspan="2"><p align="center"><em>nifV</em> for  qRT-PCR</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">QnifVR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ACTGCAGCCAGCGCCTTAAA</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">Q16SF</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ACTCCTACGGGAGGCAGCAG</p></td>
 +
              <td width="84" rowspan="2"><p align="center">16S    rRNAfor qRT-PCR</p></td>
 +
            </tr>
 +
            <tr>
 +
              <td width="123"><p align="left">Q16SR</p></td>
 +
              <td width="406"><p align="center">5&rsquo;-ATTACCGCGGCTGCTGG</p></td>
 +
            </tr>
 
         </table>
 
         </table>
        <p>Total 20ul</p>
+
      </div>
<p>&nbsp;</p>
+
       <div class="word" align="left" id="reference">
        <h4>PCR(pbrr):</h4>
+
<p>Reactoin system(total 50 ul)</p>
+
        <table border="1" cellspacing="0" cellpadding="0">
+
          <tr>
+
            <td width="113" valign="top"><br />
+
              Primer R </td>
+
            <td width="66" valign="top"><p>1ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>Primer F</p></td>
+
            <td width="66" valign="top"><p>1ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>plasmid</p></td>
+
            <td width="66" valign="top"><p>1ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>dNTP</p></td>
+
            <td width="66" valign="top"><p>1ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>rTap</p></td>
+
            <td width="66" valign="top"><p>1ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>10*Buffer</p></td>
+
            <td width="66" valign="top"><p>5ul</p></td>
+
          </tr>
+
          <tr>
+
            <td width="113" valign="top"><p>         ddH2O</p></td>
+
            <td width="66" valign="top"><p>40ul</p></td>
+
          </tr>
+
        </table>
+
        <p>Reaction time</p>
+
        <table border="1" cellspacing="0" cellpadding="0">
+
          <tr>
+
            <td width="60" valign="top"><br />
+
              95℃ </td>
+
            <td width="60" valign="top"><p>3min</p></td>
+
            <td width="100" valign="top"><p>&nbsp;</p></td>
+
          </tr>
+
          <tr>
+
            <td valign="top"><p>95℃ </p></td>
+
            <td valign="top"><p>30s</p></td>
+
            <td valign="top"><p>&nbsp;</p></td>
+
          </tr>
+
          <tr>
+
            <td valign="top"><p>65℃ </p></td>
+
            <td valign="top"><p>30s</p></td>
+
            <td valign="top"><p>&nbsp;</p></td>
+
          </tr>
+
          <tr>
+
            <td valign="top"><p>72℃ </p></td>
+
            <td valign="top"><p>1min</p></td>
+
            <td valign="top"><p>34 cycle from step2</p></td>
+
          </tr>
+
          <tr>
+
            <td valign="top"><p>72℃ </p></td>
+
            <td valign="top"><p>5min</p></td>
+
            <td valign="top"><p>&nbsp;</p></td>
+
          </tr>
+
        </table>
+
        <h3>Constract lighr-driven nitrogen fixion system</h3>
+
        <p>Transfer the two plasmid: ompa-pbrr/PBAD and  nif gene/PUC57 to the E.coli BL21. The constracted E.coli was cultured in LB medium  containing 100ug/ml ampicillin at 37℃. When the optical density at 600nm(OD600) reached 0.6, cultures were  transferred to a nitrogen-deficient  medium (supplemented with Ampicillin) with 100% N2. During anaerobic  growth, cultures were supplemented with a sterile solution contain 1mM IPTG,  1mM Cd(NO3)2, 1mM Arabinose in a nitrogen-deficient  medium (supplemented with Ampicillin). Cultures were incubated at 37℃ under anaerobic conditions for 12 hours with stirring and then in  light for 3 hours. </p>
+
<h3>Verification of Pnif in E. coli</h3>
+
        <h4>Measure the effect of ammonium</h4>
+
        <p>To verify the promoter of <em>nifB</em> gene(<em>Pnif</em>) in E.  coli, a fluorescent assay was conducted. Plasmids with<em> Pnif </em>and <em>Dronpa</em> which  encode fluorescent protein were transferred into E. coli. Strains were grown  overnight in 100ml LB broth. The strain was then centrifuged and resuspended  with 1ml sterilized water. 100μL bacteria solution was transferred to 500mL nitrogen-deficient  medium (supplemented with Ampicillin) in a serum vial. For  measuring the effect of ammonium, a gradient of 0, 1mM, 5mM and 10mM was built. After  incubating  the cultures  for 15 minutes, the headspace of serum vials was  then evacuated and replaced with argon. 1.5ml of the culture was centrifuged  and resuspended, and then use a plate reader (Tecan  Infinite M1000 Pro) for OD600 and fluorescent (λ<sub><strong>excitation</strong></sub>/λ<sub><strong>emission</strong></sub> = 503 nm/518 nm) assay every 1 hour.  All treatments were in three replicates and all the experiments were repeated  three or more times.</p>
+
        <h4>Activity curve</h4>
+
        <p>To determine the best timing for <em>Pnif</em>  expression, strains mentioned above were  grown in 100ml LB broth at day,OD600 and  fluorescent assays were conducted by plate reader(Tecan  Infinite M1000 Pro) every one hour until the fluorescent/OD600  value stay unchanged. 50mL of the culture was then centrifuged, resuspended  with 50ml sterilized water and transferred to 50mL nitrogen-deficient medium  (supplemented with Ampicillin) in a serum vial. The headspace of serum vials was  then evacuated and replaced with argon. Every one hour, 1.5ml of the culture was centrifuged  and resuspended, and then use a plate reader (Tecan  Infinite M1000 Pro) for OD600 as well as fluorescent (λ<sub><strong>excitation</strong></sub>/λ<sub><strong>emission</strong></sub> = 503 nm/518 nm) assays.  All treatments were in three replicates and all the experiments were repeated  three or more times.<br/>
+
        As control Group, the E.coli only with dro gene was used to compare with our recombinant E. coli strains</p>
+
        <h3>Demostrate the expression of nitrogenase gene and ompa-pbrr gene</h3>
+
        <h4>SDS analysis</h4>
+
        <p>Cultures of engineered E. coli strains were  grown either in non-N2-fixing conditions (21% O<sub>2</sub>, dark) and harvested after 15  h of incubation or grown in N2-fixing conditions (100%N<sub>2</sub>, light) and harvested  after 15 h of incubation(4h in light condition), respectively. <br />
+
          The cell pellet collected from 4 ml  cultures at OD600 = 1 was dissolved in 200 ml sodium dodecyl sulfate  (SDS) gel-loading buffer, boiled for 5 min and then 20 ul was loaded onto the  stacking gel. Proteins were separated and stacked by sodium dodecyl sulfate  polyacrylamide gel electrophoresis (SDS-PAGE) with 12% separation gel and 5% stacked  gel, both with an acrylamide:bis-acrylamide ratio of 29:1. <br />
+
        E. coli containing only the <em>Ompa-Pbrr</em> gene or only the <em>nif</em> gene are set as control groups.</p>
+
<h3>Demostrate the activity of recombinant E. coli</h3>
+
        <h4>Acetylene Reduction Assay</h4>
+
        <p>For nitrogenase activity assays, Recombinant  E. coli strains were initially grown in LB medium (supplemented with  Ampicillin) for 16h. The cultures were collected by centrifugation, washed  three times with sterilized water and then resuspended in nitrogen-deficient  medium (supplemented with Ampicillin) to a final OD600 of 0.6-1.0. Then,  50 ml of the culture was transferred to a 150-ml test tube and the test tube  was sealed with robber stopper. The headspace in the tube was then evacuated  and replaced with argon gas. After incubating the cultures for 6–8 h at 37°C with shaking at 180 rpm, Acetylene (10% of the  headspace volume,about 10ml) was injected into the test tubes. After incubating  the cultures under illumination for a further 16h, 100 ml of culture headspace  was withdrawn through the rubber stopper with a gas tight syringe and manually  injected into a HP6890 gas chromatograph to quantify Acetylene reduction.<br />
+
        All treatments were in three replicates and  all the experiments were repeated three or more times.<br/>
+
        For measuring the effect of oxygen on nitrogenase  activity, nitrogen-deficient medium was used, and oxygen was adjusted to the  initial concentration indicated at the start of the incubation.<br/>
+
        As control Group, the E.coli only with ompa-pbrr gene was used to compare with our recombinant E. coli strains.</p>       
+
        <h3>Demostrate the activity of recombinant E. coli with light</h3>
+
        <h4>Colorimetric  assay of NH3 production</h4>
+
      <p>The amount of NH3 produced was  measured using a colorimetric ammonia assay kit (BioVision). Briefly, 50 <a name="OLE_LINK2" id="OLE_LINK2"></a><a name="OLE_LINK1" id="OLE_LINK1">μL</a> of E.coli(diluting to 1/5 by assay buffer) was mixed with 50 μL of kit reaction buffer and incubated at 37 °C for  1 h. The absorbance at 570 nm was measured by plate reader (Tecan Infinite M1000  Pro). </p>
+
In order to study the effect of Ompa-Pbrr in  transferring electron transport energy under illumination, after 12 h, it was  shaken for 3 h in the dark and is set as a control group. E. coli containing only  the Ompa-Pbrr gene or only the nif gene are also set as control groups.
+
      <h4>Fluorescence assay of NH3 production</h4>
+
      <p>Ammonia production was verified by a second,  independent method of ammonia detection based on fluorescence detection using  o-phthaladehyde. Culture was added to 1 mL of a solution of 20 mM  o-phthalaldehyde, 0.2 M phosphate buffer (pH 7.3), 5% ethanol, 3.4 mM  β-mercaptoethanol. Samples were incubated in the dark for 30 min at room  temperature. The fluorescence (λ<strong>excitation</strong>/λ<strong>emission</strong> = 410 nm/472 nm) of  the solutions was measured using a plate reader (Tecan Infinite M1000 Pro). <br />
+
        A calibration curve was created by incubating  E.coli in the dark for 90 min. Ammonium chloride was then added, in appropriate  amounts, to aliquots of the filtered solution to a final volume of 50 μL then  reacted, incubated, and assayed as described above. Ammonia production above<u> background levels</u> was in agreement with the results of the colorimetric  assay.<br />
+
        In order to  study the effect of Ompa-Pbrr in transferring electron transport energy under  illumination, after 12 h, it was shaken for 3 h in the dark and is set as a  control group. E. coli containing only the <em>Ompa-Pbrr</em> gene or only the <em>nif</em> gene are also  set as control groups.</p>
+
</div>
+
       <div class="word" id="reference">
+
 
         <h2>Reference</h2>
 
         <h2>Reference</h2>
         <ol>
+
         <ol><li>Wang, L., et al., <em>A minimal nitrogen fixation gene  cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase  in Escherichia coli.</em> PLoS Genet, 2013. <strong>9</strong>(10):  p. e1003865.</li>
          <li>Kathryn RF,Yanning  Z,et.al.(2016)Light-driven carbon dioxide reduction to methane by nitrogenase  in a photosynthetic bacterium <em>PNAS</em></li>
+
        <li>Fixen, K.R., et  al., <em>Light-driven carbon dioxide  reduction to methane by nitrogenase in a photosynthetic bacterium.</em> Proc  Natl Acad Sci U S A, 2016. <strong>113</strong>(36): p. 10163-7.</li>
          <li>Wang L,Zhang L,Liu Z,Zhao D,Liu  X et.al(2013) A minimal Nitrogen Expression of Active Nitrogenase in Escherichia coli <em>PLOS Genetics</em>9(10):e1003865</li>
+
        <li>Brown, K.A., et al., <em>Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid.</em> Science, 2016. <strong>352</strong>(6284): p. 448-50.</li>
          <li>Katherine AB,Derek FH,Molly BW  et.al(2016) Light-driven nitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid <em>Science</em>352,448</li>
+
           <li>Kuypers, M.M.M., H.K. Marchant, and B. Kartal, <em>The microbial nitrogen-cycling network.</em> Nat Rev Microbiol, 2018. <strong>16</strong>(5): p. 263-276.</li>
           <li>Wei W,Sun PQ,Li Z,Song KS,Su WY,Wang B,Liu YZ,Zhao J et.al (2018) A surface display biohybrid approach to  light-driven hydrogen production in air <em>Science</em> eaap9253</li>
+
          <li>Wei, W., et al., <em>A surface-display biohybrid approach to  light-driven hydrogen production in air.</em> Sci Adv, 2018. <strong>4</strong>(2): p. eaap9253.</li>
           <li>Wei W,Zhu T,Wang Y et.al(2012) Engineering a gold-specific regulon for cell-based visual detection and recovery of gold <em>Chem.Sci,</em>3,1780-1784</li>
+
           <li>Wang, X., et al., <em>Using synthetic biology to  distinguish and overcome regulatory and functional barriers related to nitrogen  fixation.</em> PLoS One, 2013. <strong>8</strong>(7):  p. e68677.</li>
           <li>James BH&amp;Douglas CR(1996) Structural Basis of Biological Nitrogen Fixation <em>Chem.Rev.</em>96,2965-2982</li>
+
          <li>Yang, J., et  al., <em>Modular electron-transport chains  from eukaryotic organelles function to support nitrogenase activity.</em> Proc  Natl Acad Sci U S A, 2017. <strong>114</strong>(12): p. E2460-E2465.</li>
 +
          <li>Yang, J., et  al., <em>Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology.</em> Proc Natl Acad Sci U S A, 2018. <strong>115</strong>(36):  p. E8509-E8517.</li>
 +
           <li>Yang, J.G., et  al., <em>Reconstruction and minimal gene  requirements for the alternative iron-only nitrogenase in Escherichia coli.</em> Proceedings of the National Academy of Sciences of the United States of  America, 2014. <strong>111</strong>(35): p. E3718-E3725.</li>
 +
  <li>Howard, J.B. and D.C. Rees, <em>Structural basis of biological nitrogen  fixation.</em> Chemical Reviews, 1996. <strong>96</strong>(7):  p. 2965-2982.</li>
 
         </ol>
 
         </ol>
 
       </div>
 
       </div>
Line 326: Line 472:
 
       </div>
 
       </div>
 
       </div>
 
       </div>
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
+
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/a/ae/T--Nanjing-China--footerNOTEBOOK.png" width="100%" /></div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 03:59, 18 October 2018

Nanjing-China2018

March
April
May
June
July
August
September

Protocol

Plasmids and Bacterial Strains.

The bacterial strains, plasmids and primers used in this study are all listed in Table 1. Escherichia coliJM109 was purchased from Takara and designated EJ. A high-copy plasmid, pUC57-nif (pMB1 ori), harboring the minimal nitrogen fixation gene cluster (nif) of Paenibacillus polymyxa CR1 was chemically synthesized and then transformed into E. coli JM109, and the resulting recombinant was designated EJN. For construction of the second plasmid, pJQ200SK OmpA/PbrR (with a compatible p15A ori), a lab store plasmid pBAD24-OmpA/PbrR was used as the template to PCR-amplify OmpA/PbrR with P200F and P200R primers. After confirmation by sequencing, the PCR product was digested with Kpn I and Hind III and then insert into pJQ200SK to yield pJQ200SK-OmpA/PbrR. EJN transformed with pJQ200SK-OmpA/PbrR was selected from LB agar plates containing appropriate antibiotics, and the resulting strain was designated EJNC.

Culture Conditions.

LB broth for E. coli JM109 growth contained 10g/L tryptone, 10 g/L NaCl, and 5 g/L yeast extract. KPM minimal medium was adopted for all nitrogen fixation assays and contained per liter 1040 mg Na2HPO4, 3400 mg KH2PO4, 26 mg CaCl2·2H2O, 30 mg MgSO4, 7.5 mg Na2MoO4·2H2O, 0.3mg MnSO4, 8000 mg glucose, 500 mg casein hydrolysate, 36 mg ferric citrate, 10 mg para-aminobenzoic acid, 5 mg biotin, and 1 mg vitamin B1, supplied with 10 mM (NH4)2SO4 (KPM-HN) for pregrowth or 10 mM glutamate (KPM-LN) for nitrogenase activity assays. Antibiotics were supplemented as required at the following concentrations: 100 μg/mL of ampicillin, and 20 μg/mL of gentamycin.

Quantitative Real-time PCR.

After harvesting bacteria from LB medium, purification of total RNA was performed using RNAiso Plus reagent (TaKaRa, Japan) following the protocol described by the manufacturer. One microgram of qualified total RNA was subjected to reverse transcription with a PrimeScript RT reagent Kit with gDNA Eraser per the manufacturer’s instructions (TaKaRa, Japan). qRT-PCR of the resulting cDNA was performed with gene-specific primers (Table 1) on a CFX Connect Real-Time PCR Detection System (Bio-Rad, USA) with a SYBR Premix Ex Taq (Tli RNaseH Plus) Kit (TaKaRa, Japan). Standard curves of cDNA dilutions were used to determine the PCR efficiency. An expression data analysis was performed by the Pfaffl method of relative quantification using CFX Manager 3.1 software (Bio-Rad, USA).

Nitrogenase Activity Assay.

The C2H2 reduction method was used to assay nitrogenase activity. EJNC was initially grown overnight in KPM-HN medium and then diluted in 2 mL KPM-LN medium in 20 mL sealed tube to a final OD600 of about 0.3. Air in the tubes was repeatedly evacuated and replaced with argon. After incubation at 37 °C for 6 to 8 h, 2 mL C2H2 was injected. 1 mL of gas was sampled from the gas phase 16 h later and analyzed with a GC-7890B (Agilent, USA) gas chromatograph after appropriate 10-fold serially dilution with nitrogen. Both EJ and EJN severed as controls.

ICP-MS(Inductively Coupled Plasma Mass Spectrometry) measurement of Cd2+ adsorption.

Escherichia coli BL21 containing OmpA-PbrR-PJQ200SK (pBAD33) plasmid was cultured in LB medium to an OD600 of 0.4-0.6. Arabinose and CdCl2 were added to the medium to a final arabinose concentration of 40 μM and a final Cd2+ concentration of 100 μM, to induce the formation of CdS nano semiconductors.From the start of the induction, 5 ml of the bacterial solution was taken from the culture every 6 hours (sampling to 24 hours), centrifuged at 4000 rpm for 2 minutes, and washed three times with water to remove the medium involved in the bacterial surface.The washed bacteria were resuspended in 5 ml of water. OD600 was measured, and the bacteria were collected by centrifugation.3 ml of concentrated nitric acid was added and the mixture was digested overnight at 90 °C.The Cd2+ content in the sample was measured using ICP-MS.

Cd2+ toxicity test.

Multiple groups of LB medium were prepared, and arabinose with a final concentration of 40 μM and different amounts of CdCl2 were added to the medium to form a Cd2+ gradient of 0,150 μM, 300 μM, 600 μM, and 1000 μM.E. coli BL21 containing the OmpA-PbrR-PJQ200SK (pBAD33) plasmid and plasmid-free E. coli BL21 (control) were cultured in different media.The OD600 value was measured every 2 hours and measured for 12 hours.

Transmission electron microscopy with energy-dispersive x-ray spectroscopy (TEM-EDX).

After the Cd2+ adsorption induction was completed, the bacteria were collected by centrifugation and resuspended in ultrapure water. Samples were sent for TEM image acquisition.The thick carbon film (20 to 30 nm) on the copper grid was immersed in the bacteria solution for 1 second before imaging, dried under atmospheric conditions, and then imaged using TEM. At the same time, the EDX system (EDAX, AMETEK) was attached to the microscope for elemental analysis. All TEM images were imaged using a JEOL JEM-2100 electron microscope at an acceleration bias of 200 kV.

Characterization of biologically precipitated CdS nanoparticles

 

The photocatalytic MV2+ reduction assay was performed using a 10-mm quartz cuvette with a cap and a light source(350-W Xe lamp). E.coli cells containing biosynthesized CdS nanoparticles were harvested from LB medium by centrifugation (4000 rpm for 10 min). The reaction system consisted of the same amounts of different semiconductors [TiO2 anatase (10) and synthesized free CdS nanoparticles (29)] and 3ml of 100 mM tris-HCl(PH 7), 150mM NaCl, 5% glycerol, 100mM ascorbic acid, and 5mM MV2+ in the quartz cuvette. O2 was removed by bubbling N2 into the solution for 30 min. The reaction was initiated by light irradiation and stopped by centrifugation and separation of E.coli-CdS nanoparticles from the MV buffer. The absorption spectra were immediately measured after centrifugation (1000g for 1 min). The amount of reduced MV2+(MV+) that formed was calculated by monitoring the OD605 using the molar conversion coefficient ɛ=1.3 × 104 M-1 cm-1.

Strains

E. coli

Source

EJ

E. coli JM109

TaKaRa

EJN

E. coli JM109 harboring plasmid pUC57-nif

This study

EJNC

E. coli JM109 harboring plasmids pUC57-nif and pJQ200SK-OmpA/PbrR

This study

Plasmids

characteristic

Source

pUC57

Cloning vector; pMB1 ori; Ampr

Lab store

pUC57-nif

pUC57 with nif; pMB1 ori; Ampr

Chemically synthesized

pJQ200SK

Cloning vector;p15A ori; Gmr

Lab store

pJQ200SK-OmpA/PbrR

pJQ200SK with OmpA/PbrR; p15A ori; Gmr

This study

PCR Primers

sequence

Amplicon

P200F

5’-GCTCTAGACATGAAAAAGACAGCTATCGCGA

OmpA/PbrR

P200R

5’-TCCCCCGGGTCAGATCTTATCGTCGTCATC

qRT-PCR Primers

sequence

Amplicon

QnifBF

5’-TCGGCCGTGCCAAGGAATTT

nifBfor  qRT-PCR

QnifBR

5’-CCTATGCCGGACGACAGCAG

QnifHF

5’-TGCGCCGTATGACCGTTACC

nifH for  qRT-PCR

QnifHR

5’-CCGGACGCCTCAGCTTTGTT

QnifDF

5’-GCCCGACCAAGACGATGGAG

nifD for  qRT-PCR

QnifDR

5’-CCGCAGTCCGCCAATCAGAA

QnifKF

5’-ACCTGAAGTTCGCGGCCAAA

nifK for  qRT-PCR

QnifKR

5’-ATCCGGAGCCTGCTCTTCCA

QnifEF

5’-TGCGGCAGATGGCTTACCTG

nifE for  qRT-PCR

QnifER

5’-AGCACTGCCCGCTTTCCTTT

QnifNF

5’-TCGAGAGCCGATTGCCGTTC

nifN for  qRT-PCR

QnifNR

5’-ATCCAGCGCCTCCTCCAGAT

QnifXF

5’-CGACGGAAGACGGTGTGCAT

nifX for  qRT-PCR

QnifXR

5’-TCCAGGAACTGGACGCCTGA

QnifVF

5’-TGGGCGCTGACCATTCGTTT

nifV for  qRT-PCR

QnifVR

5’-ACTGCAGCCAGCGCCTTAAA

Q16SF

5’-ACTCCTACGGGAGGCAGCAG

16S rRNAfor qRT-PCR

Q16SR

5’-ATTACCGCGGCTGCTGG

Reference

  1. Wang, L., et al., A minimal nitrogen fixation gene cluster from Paenibacillus sp. WLY78 enables expression of active nitrogenase in Escherichia coli. PLoS Genet, 2013. 9(10): p. e1003865.
  2. Fixen, K.R., et al., Light-driven carbon dioxide reduction to methane by nitrogenase in a photosynthetic bacterium. Proc Natl Acad Sci U S A, 2016. 113(36): p. 10163-7.
  3. Brown, K.A., et al., Light-driven dinitrogen reduction catalyzed by a CdS:nitrogenase MoFe protein biohybrid. Science, 2016. 352(6284): p. 448-50.
  4. Kuypers, M.M.M., H.K. Marchant, and B. Kartal, The microbial nitrogen-cycling network. Nat Rev Microbiol, 2018. 16(5): p. 263-276.
  5. Wei, W., et al., A surface-display biohybrid approach to light-driven hydrogen production in air. Sci Adv, 2018. 4(2): p. eaap9253.
  6. Wang, X., et al., Using synthetic biology to distinguish and overcome regulatory and functional barriers related to nitrogen fixation. PLoS One, 2013. 8(7): p. e68677.
  7. Yang, J., et al., Modular electron-transport chains from eukaryotic organelles function to support nitrogenase activity. Proc Natl Acad Sci U S A, 2017. 114(12): p. E2460-E2465.
  8. Yang, J., et al., Polyprotein strategy for stoichiometric assembly of nitrogen fixation components for synthetic biology. Proc Natl Acad Sci U S A, 2018. 115(36): p. E8509-E8517.
  9. Yang, J.G., et al., Reconstruction and minimal gene requirements for the alternative iron-only nitrogenase in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America, 2014. 111(35): p. E3718-E3725.
  10. Howard, J.B. and D.C. Rees, Structural basis of biological nitrogen fixation. Chemical Reviews, 1996. 96(7): p. 2965-2982.