Difference between revisions of "Team:Nanjing-China/Results"

m
 
(26 intermediate revisions by 2 users not shown)
Line 4: Line 4:
 
<title>Nanjing-China2018</title>
 
<title>Nanjing-China2018</title>
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:4?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:4?action=raw&ctype=text/css" />
 +
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
 +
#HQ_page #cds .word-note p{ text-align:center; }
 +
#HQ_page #nit .word-note p{ text-align:center; }
 
</style>
 
</style>
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:3?action=raw&ctype=text/javascript"></script>
+
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript">
 
<script type="text/javascript">
 
function menuFix(){
 
function menuFix(){
Line 41: Line 44:
  
 
<body>
 
<body>
 +
<div id="loader">
 +
<div class="spinner">
 +
  <div class="spinner-container container1">
 +
    <div class="circle1"></div>
 +
    <div class="circle2"></div>
 +
    <div class="circle3"></div>
 +
    <div class="circle4"></div>
 +
  </div>
 +
  <div class="spinner-container container2">
 +
    <div class="circle1"></div>
 +
    <div class="circle2"></div>
 +
    <div class="circle3"></div>
 +
    <div class="circle4"></div>
 +
  </div>
 +
  <div class="spinner-container container3">
 +
    <div class="circle1"></div>
 +
    <div class="circle2"></div>
 +
    <div class="circle3"></div>
 +
    <div class="circle4"></div>
 +
  </div>
 +
</div>
 +
</div>
 +
<script type="text/javascript">
 +
            $(window).load(function() {
 +
                $("#loader").fadeOut("slow");
 +
            })
 +
</script>
 
<div id="d">
 
<div id="d">
 
<img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" />
 
<img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" />
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
<div class="sub">
 
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li></ul></div>
 
<div class="sub">
 
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></ul></li></div>
 
 
   <div class="sub">
 
   <div class="sub">
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
 
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
  <div class="sub">
+
        <ul>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></ul></li></div>
+
    <li><a href="#overview">Overview</a></li>
  <div class="sub">
+
    <li><a href="#cds">CdS</a></li>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Improvement">Improvement</a></ul></li></div>
+
  <li><a href="#nit"><font size="-1">Nitrogen fixation</font></a></li>
 +
  </ul>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judges</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
  <div id="menu">
+
<div id="menu" >
    <ul>  
+
        <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">HOME</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font> CHASER</a>
 +
    <ul>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
 +
            <li><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges">For_Judges</a></li>
 +
</ul>
 +
    </li>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">PROJECT</a>
 
     <ul>
 
     <ul>
        <li><a href="https://2018.igem.org/Team:Nanjing-China">Introduction</a></li>
 
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
 
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Background">Background</a></li>
 +
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 +
                <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
</ul>
 
</ul>
    </li>
+
        </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Parts">PARTS</a>
 
         <ul>
 
         <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Basic_Part">Basic_Part</a></li>
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improved_Parts">Improved</a></li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Composite_Part">Composite</a></li>
 +
             <li><a href="https://2018.igem.org/Team:Nanjing-China/Improve">Improve</a></li>
 
</ul>
 
</ul>
 
             </li>
 
             </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">JUDGE</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
    <ul>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Bronze">Bronze</a></li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Sliver">Sliver</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Gold">Gold</a></li>
+
</ul>
+
 
       </li>
 
       </li>
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">PROJECT</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
    <ul>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">Notebook</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Improvement">Improvement</a></li>
+
</ul>
+
        </li>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">TEAM</a>
+
    <ul>
+
        <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Introduction</a></li>
+
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Members">Members</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Attributions">Attributions</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
</ul>
+
    </li>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">OTHERS</a>
+
 
     <ul>
 
     <ul>
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">HP</a></li>
+
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
            <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">Model</a></li>
+
                <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
                <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
+
 
</ul>
 
</ul>
 
     </li>
 
     </li>
 +
    <li><a href="https://2018.igem.org/Team:Nanjing-China/Notebook">NOTEBOOK</a></li>
 
       </ul>
 
       </ul>
 
   </div>
 
   </div>
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" >
+
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%"  onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
 
</div>  
 
</div>  
     <div class="contain" align="left">
+
     <div class="contain">
        <div class="word">
+
    <div class="word">
<p align="left"><font size="+1">We first verified the activity of the nitrogen-fixing gene cluster  promoter<em> Pnif </em>in E. coli. The  expression of surface display proteins and nitrogenases in E. coli was then  determined by SDS electrophoresis. Finally, the nitrogenase activity was  detected by acetylene reduction assay, colorimetric assay and fluorescence assay  using o-dialdehyde.</font></p>
+
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
<p align="left">In order to ensure the expression of this gene cluster in E colifirst we verified the transcriptional activity of <em>Pnif</em> promoter in E coli cells by conducting control experiments. In  the test group, we replaced the native T5 promoter on pQE80L vector with <em>Pnif</em>, connected it to <em>Dronpa</em> fluorescent protein gene and transformed the new vectors to E.coli cells. In the control group, pQE80L  vectors with T5 promoter and <em>Dronpa</em> gene were transformed to E coli cells. The comparable level of fluorescence  intensity of the two groups indicated that <em>Pnif</em> promoter is transcriptional active in E coli cells.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/d/da/T--Nanjing-China--PROJECT-r.jpg" width="50%" /></div>
<p align="left">Transfer PQE80L with <em>Pnif</em> and<em> Dronpa</em> into E.coli BL21. Pick up the plasmid from the contracted E.coli, dual-enzyme digest and make the DNA elestrophoresis, All the cannel are from the contracted E.coli. Each one has two sequence and the shorter one is  about 700bp, which proves that the plasmid with <em>Pnif </em>and <em>dro </em>has been  transferred to the E.coli. </p>
+
    <div class="word-1" style="height:20px;"></div>
        <div class="word-1"><img src="https://static.igem.org/mediawiki/2018/3/3d/T--Nanjing-China--result-1.png" width="80%" />
+
    </div>
        <p><font size="-1">Figure1. the DNA electrophoresis of Pnif+dro from contracted E.coli. All the cannel are from the contracted E.coli</font></p></div>
+
    <div class="word" id="overview">
        </div>
+
    <h2>Overview</h2> 
        <div class="word">
+
    <p>This year we aim to achieve light-driven nitrogen fixation based on nitrogenase and OmpA-PbrR. So we divided our experiments into 2 sections: Verification and characterization of CdS semiconductor and Authentication of nitrogenase in <Em>E. coli</Em> cells.</p>  
        <p>Fluorescence and light absorption measurements reflect the change in Pnif promoter activity over time. The red line in the figure represents the change in fluorescence intensity in the presence of the Pnif promoter, while the black line represents the change in fluorescence intensity at the T5 promoter of the plasmid. The activity of the Pnif promoter reached a maximum around 11 hours and remained essentially unchanged thereafter. This result provides a reference incubation time for our further assays.</p>
+
    <p>To demonstrate that our design,  we set the <em>E. coli</em> JM109 strain containing both <em>nif</em> gene cluster and <em>OmpA-PbrR</em> gene (abbreviated as EJNC in the following passage) as the experimental group. while <em>E. coli</em> JM109 (abbreviated as EJ) that doesn’t contain any of those genes was set as a control group.</p>
        <div class="word-1"><img src="https://static.igem.org/mediawiki/2018/f/fc/T--Nanjing-China--result-2.png" width="80%" />
+
</div>
        <p><font size="-1">Figure2. The time curve of nifB promoter activity. The red line in the figure represents the change in fluorescence intensity in the presence of the Pnif promoter, while the black line represents the change in fluorescence intensity at the T5 promoter of the plasmid. The activity of the Pnif promoter reached a maximum around 11 hours and remained essentially unchanged thereafter. This result provides a reference incubation time for our further assays.</font></p></div>
+
  <div class="word" id="cds">
        </div>
+
<h2>Verification and characterization of CdS semiconductor</h2>
        <div class="word">
+
<div class="word-1">
<p>Using a similar method, we detected the activity of the Pnif at different ammonium concentrations. The results show that Pnif is not sensitive to ammonium.</p>
+
<div class="word-2">
        <div class="word-1"><img src="https://static.igem.org/mediawiki/2018/7/77/T--Nanjing-China--result-3.png" width="80%" />
+
<div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/8/8f/T--Nanjing-China--toxicity.jpg" width="80%" />
        <p><font size="-1">Fiture3. Activity changes of Pnif promoter at different ammonium concentrations. </font></p></div>
+
  <p><font size="-1">Figure 1. Cd<sup>2+</sup> toxicity test. Cadmium ions shows no significant toxic effects on both strains.</font></p></div>
        </div>
+
  </div>
        <div class="word">
+
  <div class="word-2">
  <p align="left">Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was used to determine whether the two groups of genes were transferred and  expressed specific proteins. SDS-PAGE can separate proteins into several bands according to the different migration rates produced by different molecular massesThree lanes on the left are proteins from E.coli cultured in non-nitrogen-fixation  condition with O2. While three lanes on the right are proteins from E.coli cultured in nitrogen-fixation condition without O2. On the  last lane, we can see the band of <em>OmpA-PbrR</em>, which is approximately 44kDa, beside the first arrow and the band <em>hesA,</em> which is a 24kDa nitrogenase  protein, beside the second arrow.</p>
+
<p>In order to  determine the optimum Cd<sup>2+</sup> concentration of the system, we conducted a Cd<sup>2+</sup> toxicity test. The existence of cadmium ions shows no  significant toxic effects on both strains which is evidenced by the virtually equal colony forming units, though a short term growth readjustment brought by heterologous gene expression does occur in EJNC. Considering that, we select 150 μM as the Cd<sup>2+</sup> concentration for our follow-up experiments.</p>
 +
    </div>
 +
    </div>
 +
    <div class="word-1">
 +
<div class="word-2">
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" width="80%" />
 +
  <p><font size="-1">Figure 2. Cd<Sup>2+</Sup> absorption test. The introduction of OmpA-PbrR confers the host cell with Cd<sup>2+</sup> absorption capacity.</font></p></div>
 +
  </div>
 +
  <div class="word-2">
 +
<p>The amount of biosynthesized CdS semiconductor on the <em>E. coli</em> cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). It confirms the surface-displayed PbrR-mediated  biological precipitation of CdS semiconductor on the outer membranes of cells.</p>
 +
</div>   
 +
</div>
 +
<p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
<img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" width="100%" />
 +
      <p><font size="-1">Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell.(b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd<sup>2+</sup> precipitates on the outer membrane of EJNC in the form of CdS nanoparticles. </font></p></div>
 +
    <p>To acquire a fuller  understanding of CdS nanoparticles&rsquo; characteristics, we performed transmission electron microscopy (TEM) analysis of CdS nanoparticles. The morphology and particle size of CdS nanoparticles are shown in TEM images. Next, we conducted energy-dispersive x-ray spectroscopy (EDX) to analyze its elemental composition. The result demonstrates that the semiconductor on cell surface is mainly composed of cadmium and sulfide.</p>
 +
    <p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" width="60%" />
 +
      <p><font size="-1">Figure 4. Characterization of biologically precipitated CdS nanoparticles on the outer  membranes of <em>E. coli</em> cells. The UV-Vis Spectrum of <em>E. coli</em>/CdS hybrids in solution demonstrating a band gap at 424 nm.</font></p>
 +
</div>
 +
<p>We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap and photocatalytic capability of these CdS semiconductor. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, λ<sub>absorption</sub> = 424 nm), verifying  its photocatalytic ability.</p>
 +
    <p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/b/be/T--Nanjing-China--Figure_S4.jpg" width="63%" />
 +
      <p><font size="-1">Figure 5. Quantitative comparison of the photoelectrical capacity of in situ biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles precipitate on the EJNC cells adsorb a photon and transfer an electron to MV<sup>2+</sup>.</font></p>
 +
</div>
 +
<p>The redox dye methylviologen (MV<sup>2+</sup>) is a well-established electron mediator. In combination with MV<sup>2+</sup>, the <em>E. coli</em>/CdS hybrids system easily serve as a biocatalyst for photosynthesis. The concentrations of reduced MV in various experimental groups were measured under anaerobic conditions, confirming that CdS semiconductor transfers an electron to MV<sup>2+</sup> for every photon it absorbs.</p>
 
<p>&nbsp;</p>
 
<p>&nbsp;</p>
        <div class="word-1"><img src="https://static.igem.org/mediawiki/2018/e/e7/T--Nanjing-China--result-4.png" width="80%" />
+
</div>
        <p><font size="-1">Figure4. SDS of the protein. The protein with “1” is from the E.coli cultured in no nitrogen-fixed condition. The protein with “2” is from the E.coli cultured in nitrogen-fixed condition.On the last lane, we can see the band of OmpA-PbrR, which is approximately 44kDa, beside the first arrow and the band hesA, which is a 24kDa nitrogenase protein, beside the second arrow.</font></p></div>
+
    <div class="word" id="nit">
        </div>
+
    <h2>Authentication of nitrogenase system in <em>E. coli</em> cells</h2>
          <div class="word">
+
<div class="word-note" align="center">
  <p align="left">Nitrogenase can only reduce nitrogen to ammonia but also reduce ethylene to acetylene. Therefore, we use gas chromatography to detect the amount of acetylene reduced, and indirectly detect its nitrogen fixation activity. P and N represent E. coli containing the surface display gene and the nitrogen fixation gene, respectively, and the two groups labeled with AR are grown under oxygen-free nitrogen fixation conditions. Through the experimental results, we can conclude that under nitrogen fixation conditions, our constructed E. coli can exhibit a certain nitrogenase activity.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/4/47/T--Nanjing-China--qRT-PCR.png" width="70%" />
        <div class="word-1"><img src="https://static.igem.org/mediawiki/2018/9/9a/T--Nanjing-China--result-5.png" width="80%" />
+
      <p><font size="-1">Figure 6. Expression profiles of each structure gene in the <em>nif</em> cluster that overexpressed in EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component genes of the <em>nif</em> cluster are significantly over expressed in EJNC whereas the transcription of these genes are no detected (N.D.) in nondiazotrophic <em>E. coli</em> JM109. </font></p>
        <p><font size="-1">Figure5. The reduction of acetylene. P and N represent E. coli containing the surface display gene and the nitrogen fixation gene, respectively, and the two groups labeled with AR are grown under oxygen-free nitrogen fixation conditions.</font></p></div>
+
</div>
        </div>
+
<p>To verify the  expression of <em>nif</em> gene cluster, we conducted Real-time Quantitative PCR(qRT-PCR) to detect the transcriptional  level of each <em>nif</em> gene in engineered <em>E. coli</em>, using 16S DNA as an internal  reference. The result provide the relative expression level of each <em>nif</em> gene in our constructed <em>E. coli </em>strain. After comparing the result with the nif gene cluster expression in <em>Paenibacillus polymyxa CR1</em>, we modeled the transcription and planned to optimize the structure of <em>nif</em> gene cluster to achieve the best stoichiometric proportion of each <em>nif</em> gene. <a href="https://2018.igem.org/Team:Nanjing-China/Model">(see modeling for more  details)</a></p>
        <div class="word">
+
    <div class="word-note">
  <p align="left">The amount of NH<Sub>4</Sub><sup>+</sup> produced by the nitrogenase was measured using a colorimetric assay kit. After the reaction under assay conditions, the absorption peak at 570 nm is proportional to the amount of NH4+ in the reaction solution.</br>
+
    <div class="word-2"  style="width:50%;">
First, we use the NH4Cl standard solution provided by the kit to make a standard curve. As shown in Figure a, the relationship between the absorption intensity of OD570 and the NH4+ concentration is calculated according to the formula obtained from the standard curve.</br>
+
    <img src="https://static.igem.org/mediawiki/2018/9/90/T--Nanjing-China--aca-1.png" width="95%" /></div>
Figure b is the amount of NH<Sub>4</Sub><sup>+</sup> produced by E. coli under different culture conditions after conversion according to the standard curve. Four groups of E. coli were determined under nitrogen-free nitrogen fixation conditions. Approximately 2.71 nmol of NH<Sub>4</Sub><sup>+</sup> is produced per 1 million E. coli
+
    <div class="word-2" style="width:50%;">
</p>
+
    <img src="https://static.igem.org/mediawiki/2018/e/ee/T--Nanjing-China--aca-2.png" width="95%" /></div>
        <div class="word-1"><div class="word-2"><img src="https://static.igem.org/mediawiki/2018/3/33/T--Nanjing-China--result-6-standard.png" width="100%" />
+
      <p><font size="-1">Figure 7-13. Acetylene reduction assay.</font></p>
        <p><font size="-1">Figure6a.standard curve of the Ammonium Chloride standard NH4Cl solution</font></p></div>
+
    </div>
        <div class="word-2"><img src="https://static.igem.org/mediawiki/2018/5/5b/T--Nanjing-China--result-6.png" width="100%" /><p><font size="-1">Figure6b. the OD570 and OD600 of the ompa-pbrr, nif and ompa-pbrr+nif(light/dark) in an oxygen-free environment</font></p></div>
+
    <p>Nitrogenase can not only  reduce dinitrogen to ammonia, but also reduce acetylene to ethylene. Therefore, we performed acetylene reduction assay to indirectly detected its nitrogen fixation activity. First, we plugged in 2ml of engineered bacteria (OD<sub>600</sub>≈0.3) in a 20ml thermo gas injection bottle, and injected Ar gas into the bottle to remove the air as much as possible. Since the removal of air is definitely not complete, it was necessary to cultivate for 6h to exhaust the oxygen through bacterial respiration. We then took 2ml of acetylene and  injected it into a gas collecting bottle after oxygen removal in culture. The  culture then reacted in our device for 16h. After that, we took 1ml of the gas  from the post-reaction gas collection bottle. In order not to exceed the gas chromatography&rsquo; s range, 1ml sample gas was injected into a gas-collecting bag  filled with nitrogen to dilute the sample gas. Finally, we used gas chromatography to measure ethylene content in sample. Our sample has been sent for testing by the time Wiki freeze, and we anticipate to receive the result within 5 days. We hope to share our results at the Giant Jamboree. </p>
        <p><font size="-1">In Figure a, the relationship between the absorption intensity of OD570 and the NH4+ concentration is calculated according to the formula obtained from the standard curve.
+
</div>
Figure b is the amount of NH4+ produced by E. coli under different culture conditions after conversion according to the standard curve. Four groups of E. coli were determined under nitrogen-free nitrogen fixation conditions. Approximately 2.71 nmol of NH4+ is produced per 1 million E. coli
+
</font></p>
+
        </div>
+
        </div>
+
 
</div>
 
</div>
 
  <div class="footer">
 
  <div class="footer">
Line 185: Line 229:
 
       </div>
 
       </div>
 
       </div>
 
       </div>
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/6/6d/T--Nanjing-China--footer-3.png" width="100%" /></div>
+
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 07:05, 14 November 2018

Nanjing-China2018

Overview

This year we aim to achieve light-driven nitrogen fixation based on nitrogenase and OmpA-PbrR. So we divided our experiments into 2 sections: Verification and characterization of CdS semiconductor and Authentication of nitrogenase in E. coli cells.

To demonstrate that our design, we set the E. coli JM109 strain containing both nif gene cluster and OmpA-PbrR gene (abbreviated as EJNC in the following passage) as the experimental group. while E. coli JM109 (abbreviated as EJ) that doesn’t contain any of those genes was set as a control group.

Verification and characterization of CdS semiconductor

Figure 1. Cd2+ toxicity test. Cadmium ions shows no significant toxic effects on both strains.

In order to determine the optimum Cd2+ concentration of the system, we conducted a Cd2+ toxicity test. The existence of cadmium ions shows no significant toxic effects on both strains which is evidenced by the virtually equal colony forming units, though a short term growth readjustment brought by heterologous gene expression does occur in EJNC. Considering that, we select 150 μM as the Cd2+ concentration for our follow-up experiments.

Figure 2. Cd2+ absorption test. The introduction of OmpA-PbrR confers the host cell with Cd2+ absorption capacity.

The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). It confirms the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of cells.

 

Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell.(b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd2+ precipitates on the outer membrane of EJNC in the form of CdS nanoparticles.

To acquire a fuller understanding of CdS nanoparticles’ characteristics, we performed transmission electron microscopy (TEM) analysis of CdS nanoparticles. The morphology and particle size of CdS nanoparticles are shown in TEM images. Next, we conducted energy-dispersive x-ray spectroscopy (EDX) to analyze its elemental composition. The result demonstrates that the semiconductor on cell surface is mainly composed of cadmium and sulfide.

 

Figure 4. Characterization of biologically precipitated CdS nanoparticles on the outer membranes of E. coli cells. The UV-Vis Spectrum of E. coli/CdS hybrids in solution demonstrating a band gap at 424 nm.

We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap and photocatalytic capability of these CdS semiconductor. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, λabsorption = 424 nm), verifying its photocatalytic ability.

 

Figure 5. Quantitative comparison of the photoelectrical capacity of in situ biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles precipitate on the EJNC cells adsorb a photon and transfer an electron to MV2+.

The redox dye methylviologen (MV2+) is a well-established electron mediator. In combination with MV2+, the E. coli/CdS hybrids system easily serve as a biocatalyst for photosynthesis. The concentrations of reduced MV in various experimental groups were measured under anaerobic conditions, confirming that CdS semiconductor transfers an electron to MV2+ for every photon it absorbs.

 

Authentication of nitrogenase system in E. coli cells

Figure 6. Expression profiles of each structure gene in the nif cluster that overexpressed in EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component genes of the nif cluster are significantly over expressed in EJNC whereas the transcription of these genes are no detected (N.D.) in nondiazotrophic E. coli JM109.

To verify the expression of nif gene cluster, we conducted Real-time Quantitative PCR(qRT-PCR) to detect the transcriptional level of each nif gene in engineered E. coli, using 16S DNA as an internal reference. The result provide the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the nif gene cluster expression in Paenibacillus polymyxa CR1, we modeled the transcription and planned to optimize the structure of nif gene cluster to achieve the best stoichiometric proportion of each nif gene. (see modeling for more details)

Figure 7-13. Acetylene reduction assay.

Nitrogenase can not only reduce dinitrogen to ammonia, but also reduce acetylene to ethylene. Therefore, we performed acetylene reduction assay to indirectly detected its nitrogen fixation activity. First, we plugged in 2ml of engineered bacteria (OD600≈0.3) in a 20ml thermo gas injection bottle, and injected Ar gas into the bottle to remove the air as much as possible. Since the removal of air is definitely not complete, it was necessary to cultivate for 6h to exhaust the oxygen through bacterial respiration. We then took 2ml of acetylene and injected it into a gas collecting bottle after oxygen removal in culture. The culture then reacted in our device for 16h. After that, we took 1ml of the gas from the post-reaction gas collection bottle. In order not to exceed the gas chromatography’ s range, 1ml sample gas was injected into a gas-collecting bag filled with nitrogen to dilute the sample gas. Finally, we used gas chromatography to measure ethylene content in sample. Our sample has been sent for testing by the time Wiki freeze, and we anticipate to receive the result within 5 days. We hope to share our results at the Giant Jamboree.