Difference between revisions of "Team:Nanjing-China/Results"

m
 
(14 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
 
<title>Nanjing-China2018</title>
 
<title>Nanjing-China2018</title>
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:6?action=raw&ctype=text/css" />
+
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:4?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Nanjing-China/CSS:loader?action=raw&ctype=text/css" />
 
<style type="text/css">
 
<style type="text/css">
 
+
#HQ_page #cds .word-note p{ text-align:center; }
 +
#HQ_page #nit .word-note p{ text-align:center; }
 
</style>
 
</style>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
 
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script>
Line 74: Line 75:
 
<div align="center">
 
<div align="center">
 
<div id="HOME">
 
<div id="HOME">
<div class="sub">
+
  <div class="sub">
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li></ul></div>
+
       <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></ul></li></div>
<div class="sub">
+
        <ul>
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></ul></li></div>
+
<div class="sub">
+
      <ul><li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></ul></li></div>
+
          <ul>
+
 
     <li><a href="#overview">Overview</a></li>
 
     <li><a href="#overview">Overview</a></li>
            <li><a href="#language"><font size="-1">Language project</font></a></li>
+
    <li><a href="#cds">CdS</a></li>
            <li><a href="#meet"><font size="-1"> Sharing meeting</font></a></li>
+
  <li><a href="#nit"><font size="-1">Nitrogen fixation</font></a></li>
            <li><a href="#CSU">CSU-China</a></li>
+
  </ul>
            <li><a href="#Emoji"><font size="-1">Emoji chanllenge</font></a></li>
+
            </ul>
+
 
+
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 
</div>
 +
<div id="for_judge" align="center"><div class="i"><ul><a href="https://2018.igem.org/Team:Nanjing-China/For_Judges"><strong>For_judges</strong></a></ul></div></div>
 
<div class="container" align="center">
 
<div class="container" align="center">
<div id="menu">
+
<div id="menu" >
 
         <ul>
 
         <ul>
   <li><a href="https://2018.igem.org/Team:Nanjing-China">PEOPLE</a>
+
   <li><a href="https://2018.igem.org/Team:Nanjing-China">N<font size="-1"><sub>2</sub></font> CHASER</a>
 
     <ul>
 
     <ul>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Team">Team</a></li>
Line 107: Line 102:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Design">Design</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Results">Results</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate">Demonstrate</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Demonstrate"><font size="-0.1">Demonstrate</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Hardware">Hardware</a></li> 
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/InterLab">InterLab</a></li>
Line 119: Line 114:
 
</ul>
 
</ul>
 
             </li>
 
             </li>
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODEL</a>
+
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Model">MODELING</a></a>
 
       </li>
 
       </li>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
 
     <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices">PRACTICES</a>
Line 125: Line 120:
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
         <li><a href="https://2018.igem.org/Team:Nanjing-China/Human_Practices"><font size="-1">Human_Practices</font></a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
 
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Safety">Safety</a></li>
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations">Collaboration</a></li>
+
                 <li><a href="https://2018.igem.org/Team:Nanjing-China/Collaborations"><font size="-0.1">Collaboration</font></a></li>
 
</ul>
 
</ul>
 
     </li>
 
     </li>
Line 131: Line 126:
 
       </ul>
 
       </ul>
 
   </div>
 
   </div>
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/0/06/T--Nanjing-China--title-COLLABRACTION.png" width="100%"onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)" >
+
   <div class="header"><img src="https://static.igem.org/mediawiki/2018/4/40/T--Nanjing-China--title-4.png" width="100%" onload="MM_effectAppearFade(this, 1000, 0, 100, false);MM_effectBlind('HOME', 1000, '0%', '100%', true)">
 
</div>  
 
</div>  
  <div class="contain">
+
    <div class="contain">
<div class="word" id="overview">
+
    <div class="word">
    <div class="word-1" align="left">
+
      <div style="position:absolute; top:-90px; z-index:3; left:-10px;">
      <p>Collaboration has alwayed played a crucial part in human society. So it is with the iGEM competition. Through various meaningful collaborations with teams around the world, we truly experienced the joy of helping and sharing. Meanwhile, it is also a great chance to spread the idea of iGEM to more people.</p>
+
    <img src="https://static.igem.org/mediawiki/2018/d/da/T--Nanjing-China--PROJECT-r.jpg" width="50%" /></div>
      <p>In terms of that, we Nanjing-China host our own meet up as well as enthusiastically respond to collaboration invitations from other teams.</p>
+
    <div class="word-1" style="height:20px;"></div>
      <p>list: language project, Nanjing area sharing meeting, helping build a team, Emoji challenge</p>
+
 
     </div>
 
     </div>
    </div>
+
     <div class="word" id="overview">  
     <div class="word" id="language">
+
     <h2>Overview</h2>  
     <h2>1.Language project with IIT Madras</h2>
+
     <p>This year we aim to achieve light-driven nitrogen fixation based on nitrogenase and OmpA-PbrR. So we divided our experiments into 2 sections: Verification and characterization of CdS semiconductor and Authentication of nitrogenase in <Em>E. coli</Em> cells.</p>  
     <div class="word-2" style="width:40%;" align="center"><img src="https://static.igem.org/mediawiki/2018/b/b4/T--Nanjing-China--collabration-1.jpg" width="90%" /></div>
+
     <p>To demonstrate that our design, we set the <em>E. coli</em> JM109 strain containing both <em>nif</em> gene cluster and <em>OmpA-PbrR</em> gene (abbreviated as EJNC in  the following passage) as the experimental group. while <em>E. coli</em> JM109 (abbreviated as EJ) that doesn’t contain any of those genes was set as a control group.</p>
     <div class="word-2" style="width:60%;"  align="left">This year, we contacted team IIT Madras and worked with them to make an educational video on synthetic biology. Not only did we help translate the scripts into Chinese, we also recorded the audio of all the lines. Our effort contributed to their multi-language project with the Mandarin version.<br />
+
Later, we received the finished video. Please enjoy the video below:<p>
+
 
</div>
 
</div>
      <div align="center">
+
  <div class="word" id="cds">
            <object width="660" height="440" id="t-visit">
+
<h2>Verification and characterization of CdS semiconductor</h2>
              <param name="AutoStart" value=0 />
+
<div class="word-1">
              <video width="660" height="440" controls="controls">
+
<div class="word-2">
              <source src="" type="video/mp4"></video>
+
<div class="word-note" align="center"><img src="https://static.igem.org/mediawiki/2018/8/8f/T--Nanjing-China--toxicity.jpg" width="80%" />
              </object>
+
  <p><font size="-1">Figure 1. Cd<sup>2+</sup> toxicity test. Cadmium ions shows no significant toxic effects on both strains.</font></p></div>
      </div>
+
  </div>
 +
  <div class="word-2">
 +
<p>In order to  determine the optimum Cd<sup>2+</sup> concentration of the system, we conducted  a Cd<sup>2+</sup> toxicity test. The existence of cadmium ions shows no  significant toxic effects on both strains which is evidenced by the virtually equal colony forming units, though a short term growth readjustment brought by  heterologous gene expression does occur in EJNC. Considering that, we select 150 μM as the Cd<sup>2+</sup> concentration for our follow-up experiments.</p>
 
     </div>
 
     </div>
     <div class="word" id="meet">
+
     </div>
     <h2>2.A meet up with iGEM teams in Nanjing</h2>
+
     <div class="word-1">
    <p>We have effectively communicated with many  teams in various forms. <br />
+
<div class="word-2">
To share with each other our project and to chase perfection, we invited Professor Haoqian Zhang and all teams in Nanjing to hold a meet up at Nanjing University. During the time spent together, we broadened our horizon by listening to the diverse innovative opinions and gained a lot of joy by sharing stories along the way. Furthermore, through this meeting we deepened our understanding of iGEM and improved experimental design and methods to optimize our own project.  <br />
+
<div class="word-note" align="center">
After that, we also seized the excellent opportunity offered by the fifth CCiC to demonstrate our project to all teams in China and learn from others. Meanwhile, we were more than glad to see everything going well for all the teams in Nanjing we once communicated with. </p>
+
    <img src="https://static.igem.org/mediawiki/2018/0/05/T--Nanjing-China--ICP-MS.jpg" width="80%" />
        <div class="word-1" align="center"><img src="https://static.igem.org/mediawiki/2018/0/0a/T--Nanjing-China--hp-4.png" width="80%"></div>
+
  <p><font size="-1">Figure 2. Cd<Sup>2+</Sup> absorption test. The introduction of OmpA-PbrR confers the host cell with Cd<sup>2+</sup> absorption capacity.</font></p></div>
        </div>
+
    <div class="word" id="CSU">
+
    <h2>3.CSU-China</h2>
+
            <div class="word-2" style="width:40%;" align="center"><img src="https://static.igem.org/mediawiki/2018/7/78/T--Nanjing-China--collabration-3.jpg" width="90%"></div>
+
    <div class="word-2" style="width:60%;"><p>This year we also formed close connection with CSU-China, which is a team setting foot on iGEM for the first time. To begin with, we introduced everything about iGEM to them as comprehensively as possible. During their time of building up a real team, we offered timely help and advice feasible to solve their problem through social media. <br />
+
It was indeed a pleasure to offer a hand as we are a more experienced team. Except for that, it surprisingly became a chance for us to learn more novel ideas about what else can be done in iGEM. <br />
+
We genuinely hope to hear good news from them in Boston!<br />
+
</p></div>
+
        </div>
+
    <div class="word" id="Emoji">
+
    <h2>4.Our Emoji chanllenge!</h2>
+
    <div class="word-2" style="width:20%;" align="center"><img src="https://static.igem.org/mediawiki/2018/a/aa/T--Nanjing-China--collabration-5.png" width="80%"></div>
+
    <div class="word-2" style="width:60%;">
+
    <p>To record the happy moments in our lab and to propagate what a lab is like to the public, we posted a collaboration invitation on the official website to make a collection of Lab emoji. We received some feedbacks and learned that another team Lambert iGEM had shared the similar idea with us. They sent us the picture of a cartoon flask and we also downloaded their app to know more about their thoughts. Both of us had such a whale of a time making labs more appealing to the public.
+
</p></div>
+
        <div class="word-2" style="width:20%;" align="center"><img src="https://static.igem.org/mediawiki/2018/8/88/T--Nanjing-China--collabration-4.jpg" width="80%"></div>
+
        </div>
+
 
   </div>
 
   </div>
 +
  <div class="word-2">
 +
<p>The amount of  biosynthesized CdS semiconductor on the <em>E. coli</em> cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). It confirms the surface-displayed PbrR-mediated  biological precipitation of CdS semiconductor on the outer membranes of cells.</p>
 +
</div>   
 +
</div>
 +
<p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
<img src="https://static.igem.org/mediawiki/2018/a/a7/T--Nanjing-China--TEX-EDX.jpg" width="100%" />
 +
      <p><font size="-1">Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell.(b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd<sup>2+</sup> precipitates on the outer membrane of EJNC in the form of CdS nanoparticles. </font></p></div>
 +
    <p>To acquire a fuller  understanding of CdS nanoparticles&rsquo; characteristics, we performed transmission electron microscopy (TEM) analysis of CdS nanoparticles.  The morphology and particle size of CdS nanoparticles are shown in TEM images. Next, we conducted energy-dispersive x-ray spectroscopy (EDX) to analyze its elemental composition. The result demonstrates that the semiconductor on cell surface is mainly composed of cadmium and sulfide.</p>
 +
    <p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/a/a9/T--Nanjing-China--UV.jpg" width="60%" />
 +
      <p><font size="-1">Figure 4. Characterization of biologically precipitated CdS nanoparticles on the outer  membranes of <em>E. coli</em> cells. The UV-Vis Spectrum of <em>E. coli</em>/CdS hybrids in solution demonstrating a band gap at 424 nm.</font></p>
 +
</div>
 +
<p>We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap and photocatalytic capability of these CdS semiconductor. The lowest-energy transition of the biosynthesized CdS nanoparticles  was detected in the visible region of the solar spectrum (Eg = 2.92  eV, λ<sub>absorption</sub> = 424 nm), verifying  its photocatalytic ability.</p>
 +
    <p>&nbsp;</p>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/b/be/T--Nanjing-China--Figure_S4.jpg" width="63%" />
 +
      <p><font size="-1">Figure 5. Quantitative comparison of the photoelectrical capacity of in situ  biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles  precipitate on the EJNC cells adsorb a photon and transfer an electron to MV<sup>2+</sup>.</font></p>
 +
</div>
 +
<p>The redox dye methylviologen  (MV<sup>2+</sup>) is a well-established electron mediator. In combination with MV<sup>2+</sup>, the <em>E. coli</em>/CdS hybrids system easily serve as a biocatalyst for photosynthesis. The concentrations of reduced MV in various experimental groups were measured under anaerobic conditions, confirming that CdS semiconductor transfers an electron to MV<sup>2+</sup> for every photon it absorbs.</p>
 +
<p>&nbsp;</p>
 +
</div>
 +
    <div class="word" id="nit">
 +
    <h2>Authentication of nitrogenase system in <em>E. coli</em> cells</h2>
 +
<div class="word-note" align="center">
 +
    <img src="https://static.igem.org/mediawiki/2018/4/47/T--Nanjing-China--qRT-PCR.png" width="70%" />
 +
      <p><font size="-1">Figure 6. Expression profiles of each structure gene in the <em>nif</em> cluster that overexpressed in EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component genes of the <em>nif</em> cluster are significantly over expressed in EJNC whereas the transcription of these genes are no detected (N.D.) in nondiazotrophic <em>E. coli</em> JM109. </font></p>
 +
</div>
 +
<p>To verify the  expression of <em>nif</em> gene cluster, we conducted Real-time Quantitative PCR(qRT-PCR) to detect the transcriptional  level of each <em>nif</em> gene in engineered <em>E. coli</em>, using 16S DNA as an internal  reference. The result provide the relative expression level of each <em>nif</em> gene in our constructed <em>E. coli </em>strain. After comparing the  result with the nif gene cluster expression in <em>Paenibacillus polymyxa CR1</em>, we modeled the transcription and planned to optimize the structure of <em>nif</em> gene cluster to achieve the best stoichiometric proportion of each <em>nif</em> gene. <a href="https://2018.igem.org/Team:Nanjing-China/Model">(see modeling for more  details)</a></p>
 +
    <div class="word-note">
 +
    <div class="word-2"  style="width:50%;">
 +
    <img src="https://static.igem.org/mediawiki/2018/9/90/T--Nanjing-China--aca-1.png" width="95%" /></div>
 +
    <div class="word-2" style="width:50%;">
 +
    <img src="https://static.igem.org/mediawiki/2018/e/ee/T--Nanjing-China--aca-2.png" width="95%" /></div>
 +
      <p><font size="-1">Figure 7-13. Acetylene reduction assay.</font></p>
 +
    </div>
 +
    <p>Nitrogenase can not only  reduce dinitrogen to ammonia, but also reduce acetylene to ethylene. Therefore, we performed acetylene reduction assay to indirectly detected its nitrogen fixation activity. First, we plugged in 2ml of engineered bacteria (OD<sub>600</sub>≈0.3) in a 20ml thermo gas injection bottle, and injected Ar gas into the bottle to remove the air as much as possible. Since the removal of air is definitely not complete, it was necessary to cultivate for 6h to exhaust the oxygen through bacterial respiration. We then took 2ml of acetylene and  injected it into a gas collecting bottle after oxygen removal in culture. The  culture then reacted in our device for 16h. After that, we took 1ml of the gas  from the post-reaction gas collection bottle. In order not to exceed the gas chromatography&rsquo; s range, 1ml sample gas was injected into a gas-collecting bag  filled with nitrogen to dilute the sample gas. Finally, we used gas chromatography to measure ethylene content in sample. Our sample has been sent for testing by the time Wiki freeze, and we anticipate to receive the result within 5 days. We hope to share our results at the Giant Jamboree. </p>
 +
</div>
 +
</div>
 
  <div class="footer">
 
  <div class="footer">
 
     <div align="center">
 
     <div align="center">
Line 212: Line 229:
 
       </div>
 
       </div>
 
       </div>
 
       </div>
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/b/bc/T--Nanjing-China--footer-6.png" width="100%" /></div>
+
       <div class="f-b"><img src="https://static.igem.org/mediawiki/2018/5/58/T--Nanjing-China--footer-4.png" width="100%" /></div>
 
   </div>
 
   </div>
 
</div>
 
</div>
 
</body>
 
</body>
 
</html>
 
</html>

Latest revision as of 07:05, 14 November 2018

Nanjing-China2018

Overview

This year we aim to achieve light-driven nitrogen fixation based on nitrogenase and OmpA-PbrR. So we divided our experiments into 2 sections: Verification and characterization of CdS semiconductor and Authentication of nitrogenase in E. coli cells.

To demonstrate that our design, we set the E. coli JM109 strain containing both nif gene cluster and OmpA-PbrR gene (abbreviated as EJNC in the following passage) as the experimental group. while E. coli JM109 (abbreviated as EJ) that doesn’t contain any of those genes was set as a control group.

Verification and characterization of CdS semiconductor

Figure 1. Cd2+ toxicity test. Cadmium ions shows no significant toxic effects on both strains.

In order to determine the optimum Cd2+ concentration of the system, we conducted a Cd2+ toxicity test. The existence of cadmium ions shows no significant toxic effects on both strains which is evidenced by the virtually equal colony forming units, though a short term growth readjustment brought by heterologous gene expression does occur in EJNC. Considering that, we select 150 μM as the Cd2+ concentration for our follow-up experiments.

Figure 2. Cd2+ absorption test. The introduction of OmpA-PbrR confers the host cell with Cd2+ absorption capacity.

The amount of biosynthesized CdS semiconductor on the E. coli cell surface was measured using inductively coupled plasma mass spectrometry (ICP-MS). It confirms the surface-displayed PbrR-mediated biological precipitation of CdS semiconductor on the outer membranes of cells.

 

Figure 3. (a) TEM images of biosynthesized CdS nanoparticles on the surface of a EJNC cell.(b) EDX confirmation of randomly chosen CdS nanoparticle. The absorbed Cd2+ precipitates on the outer membrane of EJNC in the form of CdS nanoparticles.

To acquire a fuller understanding of CdS nanoparticles’ characteristics, we performed transmission electron microscopy (TEM) analysis of CdS nanoparticles. The morphology and particle size of CdS nanoparticles are shown in TEM images. Next, we conducted energy-dispersive x-ray spectroscopy (EDX) to analyze its elemental composition. The result demonstrates that the semiconductor on cell surface is mainly composed of cadmium and sulfide.

 

Figure 4. Characterization of biologically precipitated CdS nanoparticles on the outer membranes of E. coli cells. The UV-Vis Spectrum of E. coli/CdS hybrids in solution demonstrating a band gap at 424 nm.

We performed ultraviolet-visible (UV-vis) spectral measurements to directly determine the optical band gap and photocatalytic capability of these CdS semiconductor. The lowest-energy transition of the biosynthesized CdS nanoparticles was detected in the visible region of the solar spectrum (Eg = 2.92 eV, λabsorption = 424 nm), verifying its photocatalytic ability.

 

Figure 5. Quantitative comparison of the photoelectrical capacity of in situ biosynthesized CdS nanoparticles. The concentrations of reduced methylviologen (MV) in various experimental groups confirm that the CdS nanoparticles precipitate on the EJNC cells adsorb a photon and transfer an electron to MV2+.

The redox dye methylviologen (MV2+) is a well-established electron mediator. In combination with MV2+, the E. coli/CdS hybrids system easily serve as a biocatalyst for photosynthesis. The concentrations of reduced MV in various experimental groups were measured under anaerobic conditions, confirming that CdS semiconductor transfers an electron to MV2+ for every photon it absorbs.

 

Authentication of nitrogenase system in E. coli cells

Figure 6. Expression profiles of each structure gene in the nif cluster that overexpressed in EJNC. Relative expression compared to the housekeeping gene 16S rRNA is shown. qRT-PCR analysis demonstrates that all the component genes of the nif cluster are significantly over expressed in EJNC whereas the transcription of these genes are no detected (N.D.) in nondiazotrophic E. coli JM109.

To verify the expression of nif gene cluster, we conducted Real-time Quantitative PCR(qRT-PCR) to detect the transcriptional level of each nif gene in engineered E. coli, using 16S DNA as an internal reference. The result provide the relative expression level of each nif gene in our constructed E. coli strain. After comparing the result with the nif gene cluster expression in Paenibacillus polymyxa CR1, we modeled the transcription and planned to optimize the structure of nif gene cluster to achieve the best stoichiometric proportion of each nif gene. (see modeling for more details)

Figure 7-13. Acetylene reduction assay.

Nitrogenase can not only reduce dinitrogen to ammonia, but also reduce acetylene to ethylene. Therefore, we performed acetylene reduction assay to indirectly detected its nitrogen fixation activity. First, we plugged in 2ml of engineered bacteria (OD600≈0.3) in a 20ml thermo gas injection bottle, and injected Ar gas into the bottle to remove the air as much as possible. Since the removal of air is definitely not complete, it was necessary to cultivate for 6h to exhaust the oxygen through bacterial respiration. We then took 2ml of acetylene and injected it into a gas collecting bottle after oxygen removal in culture. The culture then reacted in our device for 16h. After that, we took 1ml of the gas from the post-reaction gas collection bottle. In order not to exceed the gas chromatography’ s range, 1ml sample gas was injected into a gas-collecting bag filled with nitrogen to dilute the sample gas. Finally, we used gas chromatography to measure ethylene content in sample. Our sample has been sent for testing by the time Wiki freeze, and we anticipate to receive the result within 5 days. We hope to share our results at the Giant Jamboree.