FMCommmichau (Talk | contribs) |
FMCommmichau (Talk | contribs) |
||
Line 6: | Line 6: | ||
</div> | </div> | ||
<p> | <p> | ||
− | Feeding the steadily increasing world population is a major task that heavily relies on the use of fertilizers and herbicides. Glyphosate is the prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades and its usage is still increasing. The herbicide is a controversial substance, as its effects on human health and the environment still remains unsure, with some sources stating the suspicion for it to be carcinogenic. It also could pose a threat to biodiversity, but no real long-term studies have been carried out so far in this regard. Our team has set itself the goal to approach the glyphosate controversy through a microbial reporter system, using the well-known model organism <i>Bacillus subtilis</i>. This system should be able to detect and indicate the presence of glyphosate. During our studies we also aim to enhance the understanding of the effects of glyphosate on bacteria. We want to show how it is taken up into the bacterial cell and which pathways are affected by it. We will present our work on the development of glyphosate-resistant <i>Bacillus subtilis</i> strains. Using these suppressor mutants, we could for the first time identify a protein that is capable of transporting glyphosate. The glyphosate-resistant strains could even provide the possibility to develop a glyphosate degradation pathway, based on the hypothesis that <i>Bacillus subtilis</i> might use glyphosate as its carbon source. Our human practice section is dedicated to the raise of awareness for Glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, this should provide an updated view on the Glyphosate controversy with renewed insights into the effects of the herbicide on organisms and possibly solution approaches with Glyphosate resistances.</p> | + | Feeding the steadily increasing world population is a major task that heavily relies on the use of fertilizers and herbicides. Glyphosate is the most-prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades and its usage is still increasing. The herbicide is a controversial substance, as its effects on human health and the environment still remains unsure, with some sources stating the suspicion for it to be carcinogenic. It also could pose a threat to biodiversity, but no real long-term studies have been carried out so far in this regard. Our team has set itself the goal to approach the glyphosate controversy through a microbial reporter system, using the well-known model organism <i>Bacillus subtilis</i>. This system should be able to detect and indicate the presence of glyphosate. During our studies we also aim to enhance the understanding of the effects of glyphosate on bacteria. We want to show how it is taken up into the bacterial cell and which pathways are affected by it. We will present our work on the development of glyphosate-resistant <i>Bacillus subtilis</i> strains. Using these suppressor mutants, we could for the first time identify a protein that is capable of transporting glyphosate. The glyphosate-resistant strains could even provide the possibility to develop a glyphosate degradation pathway, based on the hypothesis that <i>Bacillus subtilis</i> might use glyphosate as its carbon source. Our human practice section is dedicated to the raise of awareness for Glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, this should provide an updated view on the Glyphosate controversy with renewed insights into the effects of the herbicide on organisms and possibly solution approaches with Glyphosate resistances.</p> |
<p style="font-weight: bold; font-size:1.1em">iGEM-Team Göttingen, Georg-August University Göttingen, Germany</p> | <p style="font-weight: bold; font-size:1.1em">iGEM-Team Göttingen, Georg-August University Göttingen, Germany</p> | ||
<table class="team-listing"> | <table class="team-listing"> |
Revision as of 12:22, 28 August 2018
Team Göttingen
iGEM 2018
Glyphosate on my plate?
Glyphosate on my plate?! Detection and inactivation of Glyphosate using the soil bacterium Bacillus subtilis
Feeding the steadily increasing world population is a major task that heavily relies on the use of fertilizers and herbicides. Glyphosate is the most-prominent example for a total-herbicide. Glyphosate has been the most used herbicide in the US for the past decades and its usage is still increasing. The herbicide is a controversial substance, as its effects on human health and the environment still remains unsure, with some sources stating the suspicion for it to be carcinogenic. It also could pose a threat to biodiversity, but no real long-term studies have been carried out so far in this regard. Our team has set itself the goal to approach the glyphosate controversy through a microbial reporter system, using the well-known model organism Bacillus subtilis. This system should be able to detect and indicate the presence of glyphosate. During our studies we also aim to enhance the understanding of the effects of glyphosate on bacteria. We want to show how it is taken up into the bacterial cell and which pathways are affected by it. We will present our work on the development of glyphosate-resistant Bacillus subtilis strains. Using these suppressor mutants, we could for the first time identify a protein that is capable of transporting glyphosate. The glyphosate-resistant strains could even provide the possibility to develop a glyphosate degradation pathway, based on the hypothesis that Bacillus subtilis might use glyphosate as its carbon source. Our human practice section is dedicated to the raise of awareness for Glyphosate and microbial research, while simultaneously cooperating with other scientific labs to achieve our goal. In the end, this should provide an updated view on the Glyphosate controversy with renewed insights into the effects of the herbicide on organisms and possibly solution approaches with Glyphosate resistances.
iGEM-Team Göttingen, Georg-August University Göttingen, Germany
Members: | Rica Bremenkamp, Malte Holmer, Jonas Jennrich, Veronika Lutz, Janek Meißner, Lisa Schulz, Robert Warneke, Marie Wensien, Dennis Wicke |
---|---|
Supervisors: | Prof. Jörg Stülke, Dr. Fabian M. Commichau |