Line 35: | Line 35: | ||
</style> | </style> | ||
<script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script> | <script type="text/javascript" src="https://2018.igem.org/Team:Nanjing-China/Javascript:1?action=raw&ctype=text/javascript"></script> | ||
+ | <script src="SpryAssets/SpryEffects.js" type="text/javascript"></script> | ||
<script type="text/javascript"> | <script type="text/javascript"> | ||
function menuFix(){ | function menuFix(){ | ||
Line 64: | Line 65: | ||
{ | { | ||
Spry.Effect.DoBlind(targetElement, {duration: duration, from: from, to: to, toggle: toggle}); | Spry.Effect.DoBlind(targetElement, {duration: duration, from: from, to: to, toggle: toggle}); | ||
+ | } | ||
+ | function MM_effectHighlight(targetElement, duration, startColor, endColor, restoreColor, toggle) | ||
+ | { | ||
+ | Spry.Effect.DoHighlight(targetElement, {duration: duration, from: startColor, to: endColor, restoreColor: restoreColor, toggle: toggle}); | ||
} | } | ||
</script> | </script> | ||
Line 97: | Line 102: | ||
</script> | </script> | ||
<div id="d"> | <div id="d"> | ||
− | <img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" /> | + | <img src="https://static.igem.org/mediawiki/2018/f/fe/T--Nanjing-China--signal-1.jpg" width="100%" onclick="MM_effectBlind('HOME', 1000, '0%', '100%', true)" onload="MM_effectHighlight(this, 1000, '#ffffff', '#FFFF33', '#ffffff', true)" /> |
<div align="center"> | <div align="center"> | ||
<div id="HOME"> | <div id="HOME"> | ||
Line 151: | Line 156: | ||
</div> | </div> | ||
<div class="contain" align="left"> | <div class="contain" align="left"> | ||
− | <div class="word" id=" | + | <div class="word" id="IA"> |
<h1>Introduction</h1> | <h1>Introduction</h1> | ||
<p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> | <p>Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N<sub>2</sub>(nitrogen) to NH<sub>3</sub>(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.</p> |
Revision as of 12:58, 9 October 2018
Introduction
Our team, Nanjing-China 2018, intends to establish a sound and ideal whole-cell photocatalytic nitrogen fixation system. We use the engineered E. coli cells to express nitrogenase and in-situ synthesize of CdS semiconductors in the biohybrid system. Instead of ATP-hydrolysis, such system is able to photocatalytic N2(nitrogen) to NH3(ammonia). The biohybrid system based on engineered E. coli cells with biosynthesis inorganic materials will likely become an alternative approach for the convenient utilization of solar energy.