Difference between revisions of "Team:Goettingen/Part Collection"

 
Line 7: Line 7:
 
       <h2>Part collection for glyphosate resistance</h2>
 
       <h2>Part collection for glyphosate resistance</h2>
 
       </div>
 
       </div>
       <p>In this collection, we gathered all parts that contribute to the resistance against the herbicide glyphosate. First of all the two newly identified glyphosate transporters GltT and GltP. If both transporters are not present anymore, the soil bacterium <em>B. subtilis</em> is glyphosate resistant. The target of glyphosate is the EPSP synthase, which is encoded by the <em>aroE</em> gene in <em>B. subtilis</em> and by the <em>aroA</em> gene in <em>E. coli</em>. If the target is mutated, like in our part <a href="http://parts.igem.org/Part:BBa_K2586020" target="_blank">BBa_K2586020</a>, the cells are characterized by a high glyphosate resistance. If the cells express the gene encoding the glyphosate-<i>N</i>-acetyl-transferase (GAT), they are also resistant. <b>In conclusion, this collection provides options to genetically engineer organisms for enhancing the resistance towards glyphosate.</b></p>
+
       <p>In this collection, we gathered all parts that contribute to the resistance against the herbicide glyphosate. First of all the two newly identified glyphosate transporters GltT and GltP. If both transporters are not present anymore, the soil bacterium <em>B. subtilis</em> is glyphosate resistant. The target of glyphosate is the EPSP synthase, which is encoded by the <em>aroE</em> gene in <em>B. subtilis</em> and by the <em>aroA</em> gene in <em>E. coli</em>. If the target is mutated, like in our part <a href="http://parts.igem.org/Part:BBa_K2586020" target="_blank">BBa_K2586020</a>, the cells are characterized by a high glyphosate resistance. If the cells express the gene encoding the glyphosate-<i>N</i>-acetyl-transferase (GAT), they are also resistant. <b>In conclusion, our collection can serve as a powerful toolbox to genetically engineer organisms for enhancing the resistance towards glyphosate and to improve inactivation or degradation of the weedkiller by microbes.</b></p>
 
       <div class="notebook-table article_table">
 
       <div class="notebook-table article_table">
 
         <table>
 
         <table>

Latest revision as of 13:41, 12 October 2018

Part collection for glyphosate resistance

In this collection, we gathered all parts that contribute to the resistance against the herbicide glyphosate. First of all the two newly identified glyphosate transporters GltT and GltP. If both transporters are not present anymore, the soil bacterium B. subtilis is glyphosate resistant. The target of glyphosate is the EPSP synthase, which is encoded by the aroE gene in B. subtilis and by the aroA gene in E. coli. If the target is mutated, like in our part BBa_K2586020, the cells are characterized by a high glyphosate resistance. If the cells express the gene encoding the glyphosate-N-acetyl-transferase (GAT), they are also resistant. In conclusion, our collection can serve as a powerful toolbox to genetically engineer organisms for enhancing the resistance towards glyphosate and to improve inactivation or degradation of the weedkiller by microbes.

Part Number and Name
Short Description
Type Length [bp]
BBa_K2586001/gltT Uptake of glutamate or glyphosate from the environment Coding 1290
BBa_K2586002/gltP Uptake of glutamate or glyphosate from the environment Coding 1245
BBa_K2586003/aroE Converts Shikimate-3-phosphate into 5-enolpyruvylshikimate-3-phosphate Coding 1287
BBa_K2586007/aroA Converts Shikimate-3-phosphate into 5-enolpyruvylshikimate-3-phosphate Coding 1290
BBa_K2586019/gat Glyphosate N-acetyl-transferase Coding 480
BBa_K2586020/aroA* Mutated aroA Coding 480