Difference between revisions of "Team:SZU-China/Model"

Line 3: Line 3:
  
  
<style>
 
#icon{
 
transform:translateY(-49px);
 
}
 
 
.border-3 {
 
    border-width:3px !important;
 
}
 
 
</style>
 
 
 
 
 
<style>
 
<style>
 
#icon{
 
#icon{
Line 29: Line 16:
 
     -webkit-box-shadow: none;
 
     -webkit-box-shadow: none;
 
     box-shadow: none;
 
     box-shadow: none;
 +
}
 +
 +
.card-text{
 +
font-size: 20px !important;
 
}
 
}
 
</style>
 
</style>
Line 45: Line 36:
 
<div class="col-4 offset-1">
 
<div class="col-4 offset-1">
 
 
<div id="card1" class="card border-3">
+
<div id="card1" class="card border-3 h-100">
 
<div class="view text-center">
 
<div class="view text-center">
 
<img id="icon" class="card-img-top" style="width: 96px;" src="https://static.igem.org/mediawiki/2018/4/48/T--SZU-China--Model_home1.png"/>
 
<img id="icon" class="card-img-top" style="width: 96px;" src="https://static.igem.org/mediawiki/2018/4/48/T--SZU-China--Model_home1.png"/>
Line 51: Line 42:
 
<div class="card-body text-center">
 
<div class="card-body text-center">
 
<a style="color: #469789;" href="https://2018.igem.org/Team:SZU-China/Epidemic_Model"><h3 >Epidemic Model </h3></a>
 
<a style="color: #469789;" href="https://2018.igem.org/Team:SZU-China/Epidemic_Model"><h3 >Epidemic Model </h3></a>
<p>We developed a epidemic model with ordinary differential equation to predict the population dynamics of cockroaches infected by Metarhizium anisopliae. We then performed numerical simulations on the model and sensitivity analysis on some key parameters to find they impacts.
+
<p class="card-text" >We developed a epidemic model with ordinary differential equation to predict the population dynamics of cockroaches infected by Metarhizium anisopliae. We then performed numerical simulations on the model and sensitivity analysis on some key parameters to find they impacts.
 
</p>
 
</p>
 
</div>
 
</div>
Line 59: Line 50:
 
 
 
<div class="col-4 offset-2 ">
 
<div class="col-4 offset-2 ">
<div id="card2" class="card border-3">
+
<div id="card2" class="card border-3 h-100">
 
<div class="view text-center">
 
<div class="view text-center">
 
<img id="icon" class="card-img-top" style="width: 96px;" src="https://static.igem.org/mediawiki/2018/4/4b/T--SZU-China--Model_home2.png"/>
 
<img id="icon" class="card-img-top" style="width: 96px;" src="https://static.igem.org/mediawiki/2018/4/4b/T--SZU-China--Model_home2.png"/>
Line 65: Line 56:
 
<div class="card-body text-center">
 
<div class="card-body text-center">
 
<a style="color: #469789;" href="https://2018.igem.org/Team:SZU-China/Statistic_Model"><h3  >Statistical Model</h3></a>
 
<a style="color: #469789;" href="https://2018.igem.org/Team:SZU-China/Statistic_Model"><h3  >Statistical Model</h3></a>
<p>We constructed a statistical model for our experimental data from simulating room. It can give us a clear and scientific understanding that whether there had significant difference in migration rate, mortality and gnawing rate between each products.</p>
+
<p class="card-text">We constructed a statistical model for our experimental data from simulating room. It can give us a clear and scientific understanding that whether there had significant difference in migration rate, mortality and gnawing rate between each products.</p>
  
 
</div>
 
</div>

Revision as of 14:00, 13 October 2018

Epidemic Model

We developed a epidemic model with ordinary differential equation to predict the population dynamics of cockroaches infected by Metarhizium anisopliae. We then performed numerical simulations on the model and sensitivity analysis on some key parameters to find they impacts.

Statistical Model

We constructed a statistical model for our experimental data from simulating room. It can give us a clear and scientific understanding that whether there had significant difference in migration rate, mortality and gnawing rate between each products.