Difference between revisions of "Team:UCopenhagen/Results"

(Prototype team page)
 
Line 2: Line 2:
 
<html>
 
<html>
  
 +
<h1>Overview of results for the different experiments</h1>
  
<div class="column full_size">
+
<h1>Protoplast experiment with plants</h1>
<h1>Results</h1>
+
<img src="https://static.igem.org/mediawiki/2018/thumb/a/a2/T--UCopenhagen--onion6.jpeg/180px-T--UCopenhagen--onion6.jpeg" alt="Protoplast">
<p>Here you can describe the results of your project and your future plans. </p>
+
<p><strong>Figure 1</strong> Onion protoplasts </p>
</div>
+
 
+
 
+
<div class="column third_size" >
+
 
+
<h3>What should this page contain?</h3>
+
<ul>
+
<li> Clearly and objectively describe the results of your work.</li>
+
<li> Future plans for the project. </li>
+
<li> Considerations for replicating the experiments. </li>
+
</ul>
+
</div>
+
 
+
 
+
 
+
 
+
<div class="column two_thirds_size" >
+
<h3>Describe what your results mean </h3>
+
<ul>
+
<li> Interpretation of the results obtained during your project. Don't just show a plot/figure/graph/other, tell us what you think the data means. This is an important part of your project that the judges will look for. </li>
+
<li> Show data, but remember all measurement and characterization data must be on part pages in the Registry. </li>
+
<li> Consider including an analysis summary section to discuss what your results mean. Judges like to read what you think your data means, beyond all the data you have acquired during your project. </li>
+
</ul>
+
</div>
+
 
+
 
+
<div class="clear extra_space"></div>
+
 
+
 
+
 
+
<div class="column two_thirds_size" >
+
<h3> Project Achievements </h3>
+
 
+
<p>You can also include a list of bullet points (and links) of the successes and failures you have had over your summer. It is a quick reference page for the judges to see what you achieved during your summer.</p>
+
 
+
<ul>
+
<li>A list of linked bullet points of the successful results during your project</li>
+
<li>A list of linked bullet points of the unsuccessful results during your project. This is about being scientifically honest. If you worked on an area for a long time with no success, tell us so we know where you put your effort.</li>
+
</ul>
+
 
+
</div>
+
 
+
 
+
 
+
<div class="column third_size" >
+
<div class="highlight decoration_A_full">
+
<h3>Inspiration</h3>
+
<p>See how other teams presented their results.</p>
+
<ul>
+
<li><a href="https://2014.igem.org/Team:TU_Darmstadt/Results/Pathway">2014 TU Darmstadt </a></li>
+
<li><a href="https://2014.igem.org/Team:Imperial/Results">2014 Imperial </a></li>
+
<li><a href="https://2014.igem.org/Team:Paris_Bettencourt/Results">2014 Paris Bettencourt </a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
<p>After getting the production and preparation of the protoplasts and the bacteria right we incubated them together in a solution of 0.8M and 0.6M Mannitol ( for onion and tobacco respectively) in MgM-MES buffer with a PH of 5. samples from the solutions were taken after 2hours, 3 hours and the day after(approx 18hours). To evalute the samples we used a fluorescent microscope. The results seem to be negative or inconclusive. </p>
 +
<p>
 +
</p>
 +
<p>
 +
Samples incubated with the strains that didn’t have the signal sequence showed bright fluorescence(of both GFP and Mcherry) but no apparent secretion into protoplasts, although some cell membranes appeared to have a greater fluorescence than their surroundings, it was too inconclusive for making any qualitative assumptions. Some of the protoplasts appeared to be full of bacteria in which case the protoplasts had probably burst, forming a “bag-like” structureand filled with bacteria. </p>
 +
<img src="https://static.igem.org/mediawiki/2018/thumb/e/e6/T--UCopenhagen--proto.jpeg/800px-T--UCopenhagen--proto.jpeg" alt="Protoplast">
  
 +
<p><strong>Figure 2 and 3</strong> Birght field vs fluorescence filter showing tobacco proplasts forming “bag-lige” structures filled with GFP. </p>
  
 +
<p> Samples incubated with the strains containing the signal sequence showed a very weak fluorescence(of both GFP and Mcherry) and no clear fluorescence around or inside the protoplasts. We hoped to see some proteins inside the protoplasts and a greater fluorescence around the protoplasts. </p>
 +
<p>
 +
</p>
 +
<p>
 +
We can therefore conclude that the preliminary results from the injection assay using onion and tobacco protoplasts, were inconclusive. It could be that the strains containing the signal sequence attached to the protoplasts and injected protein into them but the fluorescence emitted was to weak to observe it using a fluorescence microscope. it could also be that the signal sequence somehow disrupts the production of the proteins, perhaps during folding. Furthermore, it could simply be due to the fact that the injectisome does not recognize and bind to the membrane of the protoplasts.
 +
</p>
  
  
 
</html>
 
</html>

Revision as of 13:18, 16 October 2018

Overview of results for the different experiments

Protoplast experiment with plants

Protoplast

Figure 1 Onion protoplasts

After getting the production and preparation of the protoplasts and the bacteria right we incubated them together in a solution of 0.8M and 0.6M Mannitol ( for onion and tobacco respectively) in MgM-MES buffer with a PH of 5. samples from the solutions were taken after 2hours, 3 hours and the day after(approx 18hours). To evalute the samples we used a fluorescent microscope. The results seem to be negative or inconclusive.

Samples incubated with the strains that didn’t have the signal sequence showed bright fluorescence(of both GFP and Mcherry) but no apparent secretion into protoplasts, although some cell membranes appeared to have a greater fluorescence than their surroundings, it was too inconclusive for making any qualitative assumptions. Some of the protoplasts appeared to be full of bacteria in which case the protoplasts had probably burst, forming a “bag-like” structureand filled with bacteria.

Protoplast

Figure 2 and 3 Birght field vs fluorescence filter showing tobacco proplasts forming “bag-lige” structures filled with GFP.

Samples incubated with the strains containing the signal sequence showed a very weak fluorescence(of both GFP and Mcherry) and no clear fluorescence around or inside the protoplasts. We hoped to see some proteins inside the protoplasts and a greater fluorescence around the protoplasts.

We can therefore conclude that the preliminary results from the injection assay using onion and tobacco protoplasts, were inconclusive. It could be that the strains containing the signal sequence attached to the protoplasts and injected protein into them but the fluorescence emitted was to weak to observe it using a fluorescence microscope. it could also be that the signal sequence somehow disrupts the production of the proteins, perhaps during folding. Furthermore, it could simply be due to the fact that the injectisome does not recognize and bind to the membrane of the protoplasts.