Difference between revisions of "Team:CCU Taiwan/Our Plan"

Line 157: Line 157:
  
 
<p class="first">Reaction experiment</p><br>
 
<p class="first">Reaction experiment</p><br>
 
+
<p class="description">&emsp;&emsp; There is a difference between samples of coniferyl alcohol without reacting with enzymes and smaples with Laccase and Peroxidase. From the result, we can prove that the reaction has occurred. The absorption peak shifted to the left, comparing with simulation from study (P. J. Salazar-Valencia et al. 2005), the wavelength of β-5 linkage absorption peak is shorter. Our results are similar to the results of the study, which means our product has β-5 linkage.</p>              
                <div class="row">                 
+
<br>
<div id="halftext"><p class="description">&emsp;&emsp; There is a difference between samples of coniferyl alcohol without reacting with enzymes and smaples with Laccase and Peroxidase. From the result, we can prove that the reaction has occurred. The absorption peak shifted to the left, comparing with simulation from study (P. J. Salazar-Valencia et al. 2005), the wavelength of β-5 linkage absorption peak is shorter. Our results are similar to the results of the study, which means our product has β-5 linkage.</p></div>  
+
 
     <div id="Analysis1" class="polaroid" style="display:inline-block">
 
     <div id="Analysis1" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/2/20/T--CCU_Taiwan--CCUUVvisible1.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/2/20/T--CCU_Taiwan--CCUUVvisible1.jpg" width="100%">
Line 166: Line 165:
 
                   </div>
 
                   </div>
 
                 </div>  
 
                 </div>  
                </div>
 
 
 
                 <div id="Analysis2" class="polaroid" style="display:inline-block">
 
                 <div id="Analysis2" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/d/de/T--CCU_Taiwan--CCUlinkage.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/d/de/T--CCU_Taiwan--CCUlinkage.jpg" width="100%">
Line 175: Line 172:
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
 +
               
  
                 <div id="Analysis2" class="polaroid" style="display:inline-block">
+
 
 +
                 <div id="Analysis3" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/4/4d/T--CCU_Taiwan--CCUconuferylNMR.png" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/4/4d/T--CCU_Taiwan--CCUconuferylNMR.png" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure2: NMR Spectrum of coniferyl alcohol</p>
+
                     <p>Figure3: NMR Spectrum of coniferyl alcohol</p>
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
  
                 <div id="Analysis3" class="polaroid" style="display:inline-block">
+
                 <div id="Analysis4" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/7/7d/T--CCU_Taiwan--CCUligninNMR.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/7/7d/T--CCU_Taiwan--CCUligninNMR.jpg" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure3: NMR Spectrum of commercial dealkaline lignin</p>
+
                     <p>Figure4: NMR Spectrum of commercial dealkaline lignin</p>
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
  
                 <div id="Analysis4" class="polaroid" style="display:inline-block">
+
                 <div id="Analysis5" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/9/9c/T--CCU_Taiwan--CCUlaccaseNMR.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/9/9c/T--CCU_Taiwan--CCUlaccaseNMR.jpg" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure4: NMR Spectrum of Laccase-involved reaction product</p>
+
                     <p>Figure5: NMR Spectrum of Laccase-involved reaction product</p>
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
  
                 <div id="Analysis5" class="polaroid" style="display:inline-block">
+
                 <div id="Analysis6" class="polaroid" style="display:inline-block">
 
                   <img src="https://static.igem.org/mediawiki/2018/8/8f/T--CCU_Taiwan--CCUlaccaseandperoxidaseNMR.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/8/8f/T--CCU_Taiwan--CCUlaccaseandperoxidaseNMR.jpg" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure5: NMR Spectrum of Laccase & Peroxidase-involved reaction product</p>
+
                     <p>Figure6: NMR Spectrum of Laccase & Peroxidase-involved reaction product</p>
 
                   </div>
 
                   </div>
 
                 </div><br><br>
 
                 </div><br><br>

Revision as of 12:59, 16 October 2018

ANALYSIS



  We analyzed the lignin-like polymer we produced to confirm the work is successful. In the first stage of analysis, we started by analyzing the content and structure of our lignin-like polymer by UV-visible spectroscopy. For the second stage, we used NMR spectroscopy and Mass Spectroscopy to analyze information about the molecular structure and molecular weight of our polymer. In the last stage, Thermogravimetric analysis is used to analyze the melting or decomposition point of our product. After the above experiments are completed, we have a deeper understanding of the lignin-like polymer we have made. These experimental data also help us in the application and improvement of the products.



Reaction experiment


   There is a difference between samples of coniferyl alcohol without reacting with enzymes and smaples with Laccase and Peroxidase. From the result, we can prove that the reaction has occurred. The absorption peak shifted to the left, comparing with simulation from study (P. J. Salazar-Valencia et al. 2005), the wavelength of β-5 linkage absorption peak is shorter. Our results are similar to the results of the study, which means our product has β-5 linkage.


Figure1: UV-Visible spectrum of products

Figure2: Simulation of the electronic or ultraviolet spectra for the 3 Coniferyl Alcohol units, with β-O-4 and β-5 linkages. (P. J. Salazar-Valencia et al. 2005)

Figure3: NMR Spectrum of coniferyl alcohol

Figure4: NMR Spectrum of commercial dealkaline lignin

Figure5: NMR Spectrum of Laccase-involved reaction product

Figure6: NMR Spectrum of Laccase & Peroxidase-involved reaction product



Reference

P. J. Salazar-Valencia, S. T. P´erez-Merchancano, and L. E. Bol´ıvar-Marin´ez. (2005). Optical Properties in Biopolymers: Lignin Fragments. Brazilian Journal of Physics, vol. 36, no. 3B.