Difference between revisions of "Team:XMU-China/Human Practices"

Line 1: Line 1:
<!DOCTYPE html>
 
 
<html lang="en">
 
<html lang="en">
  
 
<head>
 
<head>
     <meta charset="UTF-8" name="viewport" content="width=device-width, initial-scale=1.0, maximum-scale=1.0, user-scalable=0">
+
     <meta charset="UTF-8" name="viewport" content="width=device-width, initial-scale=1.0, <sub>max</sub>imum-scale=1.0, user-scalable=0">
 
     <meta http-equiv="X-UA-Compatible" content="IE=edge">
 
     <meta http-equiv="X-UA-Compatible" content="IE=edge">
 
     <!--ie使用edge渲染模式-->
 
     <!--ie使用edge渲染模式-->
     <meta content="width=device-width,initial-scale=1.0,maximum-scale=1.0,user-scalable=no" id="viewport" name="viewport">
+
     <meta content="width=device-width,initial-scale=1.0,<sub>max</sub>imum-scale=1.0,user-scalable=no" id="viewport" name="viewport">
 
     <meta name="renderer" content="webkit">
 
     <meta name="renderer" content="webkit">
 
     <!--360渲染模式-->
 
     <!--360渲染模式-->
Line 13: Line 12:
 
     <meta name="keywords" content="" />
 
     <meta name="keywords" content="" />
 
     <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 
     <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
     <meta name="apple-touch-fullscreen" content="yes" /><!-- 是否启用 WebApp 全屏模式,删除苹果默认的工具栏和菜单栏 -->
+
     <meta name="apple-touch-fullscreen" content="yes" />
     <meta name="apple-mobile-web-app-status-bar-style" content="black" /><!-- 设置苹果工具栏颜色:默认值为 default,可以定为 black和 black-translucent-->
+
    <!-- 是否启用 WebApp 全屏模式,删除苹果默认的工具栏和菜单栏 -->
     <meta http-equiv="Cache-Control" content="no-siteapp" /><!-- 不让百度转码 -->
+
     <meta name="apple-mobile-web-app-status-bar-style" content="black" />
     <meta name="HandheldFriendly" content="true"><!-- 针对手持设备优化,主要是针对一些老的不识别viewport的浏览器,比如黑莓 -->
+
    <!-- 设置苹果工具栏颜色:默认值为 default,可以定为 black和 black-translucent-->
     <meta name="MobileOptimized" content="320"><!-- 微软的老式浏览器 -->
+
     <meta http-equiv="Cache-Control" content="no-siteapp" />
     <meta name="screen-orientation" content="portrait"><!-- uc强制竖屏 -->
+
    <!-- 不让百度转码 -->
     <meta name="x5-orientation" content="portrait"><!-- QQ强制竖屏 -->
+
     <meta name="HandheldFriendly" content="true">
     <meta name="browsermode" content="application"><!-- UC应用模式 -->
+
    <!-- 针对手持设备优化,主要是针对一些老的不识别viewport的浏览器,比如黑莓 -->
     <meta name="x5-page-mode" content="app"><!-- QQ应用模式 -->
+
     <meta name="MobileOptimized" content="320">
     <meta name="msapplication-tap-highlight" content="no"><!-- windows phone 点击无高光 -->
+
    <!-- 微软的老式浏览器 -->
     <title>Team:XMU-China/Description - 2018.igem.org</title>
+
     <meta name="screen-orientation" content="portrait">
     <link rel="stylesheet" href="css/desciption.css">
+
    <!-- uc强制竖屏 -->
 +
     <meta name="x5-orientation" content="portrait">
 +
    <!-- QQ强制竖屏 -->
 +
     <meta name="browsermode" content="application">
 +
    <!-- UC应用模式 -->
 +
     <meta name="x5-page-mode" content="app">
 +
    <!-- QQ应用模式 -->
 +
     <meta name="msapplication-tap-highlight" content="no">
 +
    <!-- windows phone 点击无高光 -->
 +
     <title>Team:XMU-China/Human Practices - 2018.igem.org</title>
 +
    <!--    <link rel="stylesheet" href="css/cover.css">
 +
    <link rel="stylesheet" href="css/nav.css">
 +
    <link rel="stylesheet" href="css/footer.css">
 +
    <link rel="stylesheet" href="css/nav_mobile.css">-->
 +
    <link rel="stylesheet" href="css/Experiments.css">
 +
     <link rel="stylesheet" href="css/font.css">
 
     <link href="http://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
 
     <link href="http://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/cover?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/cover?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/footer?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/footer?action=raw&ctype=text/css">
 +
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/font?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav_mobile?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav_mobile?action=raw&ctype=text/css">
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/desciption?action=raw&ctype=text/css">
 
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/font?action=raw&ctype=text/css">
 
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/material-scrolltop?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/material-scrolltop?action=raw&ctype=text/css">
 +
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/experiments?action=raw&ctype=text/css">
 +
    <script src="js/jquery-1.11.0.min.js" type="text/javascript"></script>
 +
    <script src="https://2018.igem.org/Team:XMU-China/js/bootstrap?action=raw&ctype=text/javascript"></script>
 
</head>
 
</head>
  
 
<body>
 
<body>
     <div id="container">
+
     <header></header>
 +
    <!-- <div id="container">
 
         <header>
 
         <header>
 
             <div class="wrapper cf">
 
             <div class="wrapper cf">
Line 96: Line 113:
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Engineering">Engineering</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 111: Line 129:
 
             </div>
 
             </div>
 
         </header>
 
         </header>
     </div>
+
     </div> -->
    <script src="js/jquery-1.11.0.min.js"></script>
+
     <script src="https://2018.igem.org/Team:XMU-China/js/hc-mobile-nav?action=raw&amp;ctype=text/javascript"></script>
    <!-- <script src="js/hc-mobile-nav.js"></script> -->
+
     <script src="https://2018.igem.org/Team:XMU-China/js/hc-mobile-nav?action=raw&ctype=text/javascript"></script>
+
 
     <div class="header">
 
     <div class="header">
 
         <div class="logo">
 
         <div class="logo">
Line 121: Line 137:
 
         </div>
 
         </div>
 
             <div class="clear"></div>
 
             <div class="clear"></div>
             <div class="nav">
+
             <!-- <div class="nav">
 
                 <div id="Team">
 
                 <div id="Team">
 
                     <div class="nav-word">Team</div>
 
                     <div class="nav-word">Team</div>
Line 128: Line 144:
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/After_iGEM">After iGEM</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 137: Line 154:
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Engeneering">Engeneering</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 166: Line 184:
 
                 </div>
 
                 </div>
 
                 <div id="Hardwork">
 
                 <div id="Hardwork">
                     <div class="nav-word">Hardware</div>
+
                     <div class="nav-word">Hardwork</div>
 
                     <ul>
 
                     <ul>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Straberry_Pi">Straberry Pi</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Raspberry_Pi">Raspberry Pi</a></li>
                        <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li>
+
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 191: Line 209:
 
                     </a>
 
                     </a>
 
                 </div>
 
                 </div>
             </div>
+
             </div> -->
 
         </div>
 
         </div>
 
         <div class="clear"></div>
 
         <div class="clear"></div>
 
         <div class="description_banner">
 
         <div class="description_banner">
             <div class="word">Description</div>
+
             <div class="word">Human Practices</div>
 
         </div>
 
         </div>
        <nav class="Quick-navigation">
+
      <!--  <nav class="Quick-navigation">
 
             <div class="Quick-navigation_word">
 
             <div class="Quick-navigation_word">
                 <img  src="https://static.igem.org/mediawiki/2018/f/f5/T--XMU-China--right0.png">
+
                 <img  src="https://static.igem.org/mediawiki/2018/e/e6/T--XMU-China--right50.png">
                 <a href="#ABCDsystem" class="Quick-navigation-item">
+
                 <a href="#Molecular_Cloning_Hardbook" class="Quick-navigation-item">
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/d/db/T--XMU-China--right1.png">
+
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/5/50/T--XMU-China--right51.png">
                     <a href="#ABCDsystem"id="Quick_A">ABCDsystem</a></a>
+
                     <a href="#Molecular_Cloning_Hardbook"id="Quick_A">Molecular Cloning Hardbook</a></a>
                 <a href="#OMVs" class="Quick-navigation-item" >
+
                <a href="#Competition_experiment" class="Quick-navigation-item" >
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/c/cd/T--XMU-China--right2.png">
+
                    <img id="turn_img" src="https://static.igem.org/mediawiki/2018/0/04/T--XMU-China--right52.png">
                     <a href="#OMVs" id="Quick_B">OMVs</a></a>
+
                    <a href="#Competition_experiment" id="Quick_B">Competition experiment</a></a>
                 <a href="#Supporting" class="Quick-navigation-item">
+
                 <a href="#OMVs" class="Quick-navigation-item">
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/1/1c/T--XMU-China--right3.png">
+
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/d/d0/T--XMU-China--right53.png">
                     <a href="#Supporting" id="Quick_C">Supporting</a></a>
+
                     <a href="#OMVs" id="Quick_C">OMVs</a></a>
 +
                 <a href="#Addenda" class="Quick-navigation-item">
 +
                     <img id="turn_img" src="https://static.igem.org/mediawiki/2018/1/11/T--XMU-China--right54.png">
 +
                     <a href="#Addenda"id="Quick_D">Addenda</a></a>
 +
                <a href="#Supporting_project" class="Quick-navigation-item">
 +
                    <img id="turn_img" src="https://static.igem.org/mediawiki/2018/b/ba/T--XMU-China--right55.png">
 +
                    <a href="#Supporting_project"id="Quick_F">Supporting project</a></a>
 
             </div>
 
             </div>
         </nav>
+
         </nav> -->
         <div class="main">
+
         <div class="Experiments">
             <section id="ABCDsystem" class="js-scroll-step">
+
             <section id="Molecular_Cloning_Hardbook" class="js-scroll-step">
                 <div class="headline">
+
                 <div class="container">
                     ABCDsystem
+
                     <div class="row">
 +
                        <div class="col-md-offset-3 col-md-6">
 +
                            <div class="exp_name">Molecular Cloning Hardbook</div>
 +
                            <div id="accordion">
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading0">
 +
                                        <h4 class="panel-title">
 +
                                <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse0" aria-expanded="true" aria-controls="collapse0">
 +
                                    Molecular Cloning Hardbook 4.0 BETA of XMU-China
 +
                                </a></h4>
 +
                                    </div>
 +
                                    <div id="collapse0" class="panel-collapse collapse in" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> <a target="_blank" href="https://static.igem.org/mediawiki/2018/b/b5/T--XMU-China--Molecular_Cloning_Handbook.pdf"><span class="downloadpdf ">Molecular_Cloning_Handbook.pdf </span></a> </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 
                 </div>
 
                 </div>
                <h1>Background</h1>
 
                <p>Protein plays a significant role in performing physiological functions<sup>[1]</sup>. However, in diseased cells, protein carrying out a certain function may indicate the proceedings of disease. Such protein could be sorted to biomarkers, which have been regarded as the targets of disease detection and treatment in recent years.<sup>[2]-[4]</sup> Therefore, detecting those biomarkers of protein-type becomes more and more critical to biological and medical fields.
 
                </p>
 
                <p>There are two main detecting approaches to detect a particular protein in a complex sample. One is direct determination of the content after purification, and the other is binding assays which include a target recognition probe and a signal transducer. The former approach includes gel filtration chromatography, ion exchange chromatography, nickel column and more. While on the down side, these methods involve high costs, strict equipment requirements and other drawbacks, which are not suitable for promotion and application. The enzyme-linked immunosorbent assay (ELISA) is a typical representative of the latter approach, nevertheless, such assays using antibodies as affinity ligands have cross-reactivity of antibodies compromising the specificity to the target of interest.<sup>[5]</sup> What’s worse, the premise of using ELISA is to find the corresponding antibodies, but the fact is that not all proteins can find their specific antibody protein. That is to say, the use of ELISA is also limited.
 
                </p>
 
                <p>In terms of binding assays, using aptamers as affinity ligands to recognize specific proteins are better than those using antibodies. Aptamers are short, synthetic single stranded oligonucleotides (DNA or RNA) that can bind to target molecules with high affinity and specificity.<sup>[6]-[9]</sup> They are commonly selected from random sequence libraries, using the systematic evolution of ligands by exponential enrichment (SELEX) techniques.<sup>[10]</sup> Advantages of aptamers over antibodies include longer shelflife, improved thermal stability and ease of modification and conjugation.<sup>[11]</sup>
 
                </p>
 
                <p>An interesting binding assay is to use aptamers as the target recognition probes and CRISPR-Cas12a (Cpf1) as the signal amplifier, which is called Aptamer Based Cell-free Detection system(ABCD system, Figure 1). We developed this system to detect those biomarkers of protein-type for the purpose of disease detection or staging.
 
                </p>
 
                <p class="F1">
 
                    <img src="https://static.igem.org/mediawiki/2018/e/e2/T--XMU-China--ABCD_system.png">
 
                    <p class="Figure_word">Figure 1. <strong>A</strong>ptamer <strong>B</strong>ased <strong>C</strong>ell-free <strong>D</strong>etection system.</p>
 
                </p>
 
                <h1>Abstract</h1>
 
                <p>The core of the ABCD system is the specific binding of the aptamer and its target protein. We immobilize the aptamer-“complementary strand” complex on a solid phase, using a “competitive” approach to free the “complementary strand”; then the “complementary strand” was detected using the trans-cleavage property of the Cpf1 protein, which allows the fluorescence recovery of the static quenched complex whose fluorophore and quencher are linked by a ssDNA. In summary, we initially transform the protein signal to the acid signal, then transform the nucleic acid signal to the fluorescence signal. We use aptamer SYL3C<sup>[12]</sup> against EpCAM, an epithelial cell adhesion molecule that is highly expressed on the surface of adenocarcinoma cells, to test the feasibility of our system.</p>
 
                <h1 class="reference">Reference</h1>
 
                <p>
 
                    [1] Janet Iwasa, Wallace Marshall. Karp's Cell and Molecular Biology: Concepts and Experiments (8th ed.). <i>Wiley: Hoboken, NJ.</i> <strong>2016</strong>, 48-49.
 
                    <br>[2] J. K. Aronson. Biomarkers and surrogate endpoints. <i>British Journal of Clinical Pharmacology.</i> <strong>2005</strong>, 59, 491-494.
 
                    <br>[3] Kyle Strimbu, Jorge A. Tavel. What are biomarkers? <i>Current Opinion in HIV and AIDS.</i> <strong>2010</strong>, 5, 463–466.
 
                    <br>[4] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. <i>Clin. Pharmacol. Ther.</i> <strong>2001</strong>, 69, 89-95.
 
                    <br>[5] Hongquan Zhang, Feng Li, Brittany Dever, Xing-Fang Li, X. Chris Le. DNA-Mediated Homogeneous Binding Assays for Nucleic Acids and Proteins. <i>Chem. Rev.</i> <strong>2013</strong>, 113, 2812-2841.
 
                    <br>[6] Larry Gold, Barry Polisky, Olke Uhlenbeck, Michael Yarus. Diversity of Oligonucleotide Functions. <i>Annu. Rev. Biochem.</i> <strong>1995</strong>, 64, 763-797.
 
                    <br>[7] Camille L.A. Hamula, Jeffrey W. Guthrie, Hongquan Zhang, Xing-Fang Li, X. Chris Le. Selection and analytical applications of aptamers. <i>Trends Anal. Chem.</i> <strong>2006</strong>, 25, 681-691.
 
                    <br>[8] Renee K. Mosing, Shaun D. Mendonsa, Michael T. Bowser. Capillary Electrophoresis-SELEX Selection of Aptamers with Affinity for HIV-1 Reverse Transcriptase. <i>Anal. Chem.</i> <strong>2005</strong>, 77, 6107-6112.
 
                    <br>[9] Maxim Berezovski, Andrei Drabovich, Svetlana M. Krylova, Michael Musheev, Victor Okhonin, Alexander Petrov, Sergey N. Krylov. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures: A Universal Tool for Development of Aptamers. <i>J. Am. Chem. Soc.</i> <strong>2005</strong>, 127, 3165-3171.
 
                    <br>[10] M Darmostuk, S Rimpelova, H Gbelcova, T Ruml. Current approaches in SELEX: an update to aptamer selection technology. <i>Biotechnology Advances.</i> <strong>2015</strong>, 33, 1141-1161.
 
                    <br>[11] Sumedha D. Jayasena. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. <i>Clin. Chem.</i> <strong>1999</strong>, 45, 1628-1650.
 
                    <br>[12] Yanling Song, Zhi Zhu, Yuan An, Weiting Zhang, Huimin Zhang, Dan Liu, Chundong Yu, Wei Duan, Chaoyong James Yang. Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. <i>Anal Chem.</i> <strong>2013</strong>, 85, 4141-4149.
 
                </p>
 
 
             </section>
 
             </section>
             <section id="OMVs" class="js-scroll-step">
+
             <section id="Competition_experiment" class="js-scroll-step">
                 <div class="headline">
+
                 <div class="container">
                     OMVs
+
                     <div class="row">
 +
                        <div class="col-md-offset-3 col-md-6">
 +
                            <div class="exp_name">Competition experiment</div>
 +
                            <div id="accordion">
 +
                                <div class="expstep_name">Verifying the EpCAM's activity</div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading11">
 +
                                        <h4 class="panel-title">
 +
 
 +
                                    <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse11" aria-expanded="false" aria-controls="collapse11">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse11" class="panel-collapse collapse in" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● Ni-bead with EpCAM coated <br>
 +
                                                ● 5% PBS-BSA Buffer (see Appendices) <br>
 +
                                                ● Antibody of EpCAM (PE labeled) <br>
 +
                                                ● Flow Cytometer (BD FACSVerse<sup>TM</sup>)
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading114_1_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse114_1_1" aria-expanded="false" aria-controls="collapse114_1_1">
 +
                                    II. Before experiment
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse114_1_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                Prepare 5% PBS-BSA: Weigh 0.5 g BSA, then add 1×PBS to the volume being 10 mL, then mix it evenly to make sure the solid dissolved.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading115_1_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse115_1_1" aria-expanded="false" aria-controls="collapse115_1_1">
 +
                                    III. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse115_1_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                <strong>                                                1.  Make distributions:<br></strong>Add reagent to 3 1.5 mL tubes respectively according to the following instructions. Add PBS-BSA first then the antibody. <br>
 +
                                                1) Sample Group: 5 μL EpCAM-Ni bead + 185 μL PBS-BSA + 10 μL antibody of EpCAM. <br>
 +
                                                2) Positive Control: 5 μL EpCAM-Ni bead + 185 μL PBS-BSA + 10 μL antibody of EpCAM. <br>
 +
                                                3) Negative Control: 5 μL EpCAM-Ni bead + 195 μL PBS-BSA. <br>
 +
                                                <strong>2.  Wash the free antibody: <br></strong>Take out the filter of a 10 μL filter tip and insert it into a 200 μL tip to make a 200 μL filter tip. <br>
 +
                                                The above three tubes are respectively subjected to the following operations:<br>
 +
                                                1) Transfer the 200 μL of solution to the 200 μL filter tip, then pipette it up and down to mix evenly. <br>
 +
                                                2) Use a syringe to squeeze out the solution in the 200 μL filter tip. <br>
 +
                                                3) Remove the filter tip and place it in the previous tube. <br>
 +
                                                4) Rinse the tip with 450 μL of 1×PBS Buffer. <br>
 +
                                                5) Take out the tip, then transfer 150μL of Buffer from 4) to the filter tip and pipette up and down to mix evenly. <br>
 +
                                                6) Use a syringe to squeeze out the solution in the 200 μL filter tip.<br>
 +
                                                7) Repeat 5) to 6) three times, at which time 450 μL of the solution from 4) was filtered. <br>
 +
                                                8) Use a pair of scissors to cut the thin end of the filter's head and loosen the filter. <br>
 +
                                                9) Transfer 200 μL of 1×PBS Buffer to a new 1.5 ml tube. <br>
 +
                                                10) Use a pipette to insert the cut filter tip into the tube from 9) and pipette it up and down for several times. <br>
 +
                                                <strong>3.  Flow Cytometer test: <br></strong>Precautions: <br>
 +
                                                1) Turn on the regulator first, then turn on the computer, and finally turn on the instrument 30 minutes before measuring. <br>
 +
                                                2) Check if the sheath tank has a solution, if the waste container is full, and if the dehumidifier is turned on. <br>
 +
                                                3) Remember to perform a two-step <strong>self-test</strong>. <br>
 +
                                                4) Please use <strong>daily clean</strong> after measuring. <br>
 +
                                                5) Shutdown sequence: Click <strong>shut down</strong> on the software, turn off the instrument, then turn off the computer, and finally turn off the regulator. <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="expstep_name">SYL3C binding EpCAM</div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading113_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse113_1" aria-expanded="true" aria-controls="collapse113_1">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse113_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>● SYL3C-FAM (Sangon Biotech<sup>®</sup>, see Appendices) <br>
 +
                                                ● EpCAM (ACROBiosystems<sup>®</sup>) <br>
 +
                                                ● Binding Buffer (see Appendices) <br>
 +
                                                ● Fluorescence Spectrometer (Shimadzu<sup>®</sup> RF-6000) <br>
 +
                                                ● Polarizer (from a pair of 3D glasses) <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading12">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse12" aria-expanded="false" aria-controls="collapse12">
 +
                                    II. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse12" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                <strong>                                                1.  Make distributions in 1.5 mL centrifuge tubes: <br></strong>1) Tube 1 (Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-FAM + 179 μL binding Buffer. <br>
 +
                                                2) Tube 2 (Aptamer-EpCAM Group): 1 μL 100 μM (100 pmol) SYL3C-FAM + 179 μL binding Buffer. <br>
 +
                                                <strong>2.  Sample processing: <br></strong>The above 2 tubes are simultaneously subjected to the following steps: <br>
 +
                                                1) Denature at 95℃ for 10 minutes. <br>
 +
                                                2) Remove the tubes, then put them at room temperature for about 20 minutes. <br>
 +
                                                3) Add 20 μL of 100 μg/mL EpCAM protein to Tube 2. <br>
 +
                                                4) Add 20 μL of binding Buffer to Tube 1. <br>
 +
                                                5) Incubate all tubes in a shaker for 40 minutes (37℃, 200 rpm). <br>
 +
                                                Note: Avoiding light in whole process is necessary. <br>
 +
                                                <strong>3.  Measure fluorescence intensity from vertical/parallel direction: <br></strong>1) Turn on the instrument for 30 minutes before measuring. <br>
 +
                                                2) Choose "Emission Mode". The excitation wave length is 495 nm, and the range of emission wave length is from 500 nm to 600 nm. <br>
 +
                                                3) Before measuring, dilute the solution from step 2 to about 3 mL with binding Buffer in the fluorescence cuvette. <br>
 +
                                                4) Attach a polarizer to the exit of the excitation light, and attach another polarizer to the receiving inlet of the emission light to make sure the polarization directions of the two polarizers are vertical/parallel. <br>
 +
                                                5) Start measuring to obtain I<sub>∥</sub>, <sub>max</sub> (Aptamer), I<sub>⊥</sub>, <sub>max</sub> (Aptamer), I<sub>∥</sub>, <sub>max</sub> (Aptamer + EpCAM), I<sub>⊥</sub>, <sub>max</sub> (Aptamer + EpCAM). <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading13">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse13" aria-expanded="false" aria-controls="collapse13">
 +
                                    III. Appendices
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse13" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● Sequence of SYL3C-FAM: <br>
 +
                                                5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-FAM-3' <br>
 +
                                                ● Binding Buffer (pH 7.3~7.5) contains: <br>
 +
                                                1×PBS Buffer with 5 mM MgCl<sub>2</sub> <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="expstep_name">Forming double strands</div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading14">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse14" aria-expanded="false" aria-controls="collapse14">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse14" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                ● SYL3C-TEG-biotin (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● C3-FITC (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● C4-FITC (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● Binding Buffer (see Appendices) <br>
 +
                                                ● 50×TAE concentrate solution (Solarbio<sup>®</sup>) <br>
 +
                                                ● Agarose (Biowest<sup>®</sup>) <br>
 +
                                                ● DNA dye (TransGen<sup>®</sup> GelStain) <br>
 +
                                                ● Distilled water <br>
 +
                                                ● Microwave oven <br>
 +
                                                ● 10×Loading Buffer (Takara<sup>®</sup>) <br>
 +
                                                ● Electrophoresis instrument <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading15_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse15_1" aria-expanded="false" aria-controls="collapse15_1">
 +
                                    II. Before Experiment
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse15_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>Dilute 50×TAE concentrate solution to 1×TAE Buffer with distilled water.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading16">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse16" aria-expanded="false" aria-controls="collapse16">
 +
                                    III. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse16" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p><strong>1. Make distributions in 1.5 mL centrifuge tubes according to the following: <br></strong>
 +
                                                1) Tube 1 (Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin + 19 μL binding Buffer. <br>
 +
                                                2) Tube 2 (C4 Group): 1 μL 100 μM (100 pmol) C4-FITC + 19 μL binding Buffer. <br>
 +
                                                3) Tube 3 (C3 Group): 1 μL 100 μM (100 pmol) C3-FITC + 19 μL binding Buffer. <br>
 +
                                                4) Tube 4 (C4&Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin +1 μL 100 μM (100 pmol) C4-FITC + 18 μL binding Buffer. <br>
 +
                                                5) Tube 5 (C3&Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin +1 μL 100 μM (100 pmol) C3-FITC + 18 μL binding Buffer. <br>
 +
                                                Note: The Tube 2, 3, 4 and 5 should be coated by tin foil properly after distributing. <br>
 +
                                                <strong>2. Sample processing: <br></strong>
 +
                                                The above 5 tubes are simultaneously subjected to the following steps: <br>
 +
                                                1) Denature at 95℃ for 10 minutes. <br>
 +
                                                2) Anneal to room temperature for 20 minutes. <br>
 +
                                                <strong>3. Prepare 3% agarose gel: <br></strong>
 +
                                                1) Weigh 0.9 g of agarose in a 100 mL Erlenmeyer flask. <br>
 +
                                                2) Add 30 mL of 1×TAE Buffer into the flask from 1). <br>
 +
                                                3) Make agarose melt by microwave oven (medium-high heat, about 3 minutes). <br>
 +
                                                4) Add 3 μL of GelStain, mix by shocking. <br>
 +
                                                5) Assemble gel pouring apparatus by inserting gate into slots. <br>
 +
                                                6) Pour agarose gel into the gel tray. <br>
 +
                                                7) Cool for 40 minutes to solidify the DNA agarose gel. <br>
 +
                                                8) Remove the pouring apparatus, put the gel into an electrophoresis instrument. <br>
 +
                                                <strong>4. Electrophoresis: <br></strong> 1) Add 2 μL of 10×Loading Buffer to each tube, then pipette up and down to evenly mix. <br>
 +
                                                2) Pipette all samples which have been mixed with loading Buffer into the slots. <br>
 +
                                                3) Turn on the electrophoresis instrument, set the working electric current at 150 mA and the working electric voltage at 110 V. <br>
 +
                                                4) Electrophoresis for 50 minutes. <br>
 +
                                                <strong>5. Gel imaging: <br></strong> Turn off the instrument, take the gel into the gel formatter to take and save photos. <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading15_1_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse15_1_1" aria-expanded="false" aria-controls="collapse15_1_1">
 +
                                    IV. Appendices
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse15_1_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>● Sequence of SYL3C-TEG-biotin: <br>
 +
                                                5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-TEG-Biotin-3' <br>
 +
                                                ● Sequence of C3-FITC: <br>
 +
                                                5'-CTCTGTAGTGTTTTTTTTTTTTTT-FITC-3' <br>
 +
                                                ● Sequence of C4-FITC: <br>
 +
                                                5'-TCTGTAGTGTTTTTTTTTTTTTTT-FITC-3' <br>
 +
                                                ● Binding Buffer (pH 7.3~7.5)contains: <br>
 +
                                                1×PBS Buffer with 5 mM MgCl<sub>2</sub> <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="expstep_name">Competition </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading17">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse17" aria-expanded="false" aria-controls="collapse17">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse17" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● SYL3C-TEG-biotin (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● C3-FITC (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● EpCAM (ACROBiosystems<sup>®</sup>) <br>
 +
                                                ● Magnetic Beads (InvitrogenTM) <br>
 +
                                                ● Binding & Washing Buffer (see Appendices) <br>
 +
                                                ● Incubation Buffer (see Appendices) <br>
 +
                                                ● Vortex (IKA<sup>®</sup> lab dancer) <br>
 +
                                                ● Fluorescence Spectrometer (Shimadzu<sup>®</sup> RF-6000) <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading17_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse17_1" aria-expanded="false" aria-controls="collapse17_1">
 +
                                    II. Before experiment
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse17_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> 1.8 μL of 100 μM SYL3C-TEG-biotin is diluted by 1×B&W Buffer up to 75 μL, and 1.2 μL of C3-FITC is also diluted by 1×B&W up to 50 μL. <br>The tube of 100 μg/mL C3-FITC should be coated properly by tin foil in order to avoid being quenched.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading18">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse18" aria-expanded="false" aria-controls="collapse18">
 +
                                    III. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse18" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                <strong>1.  Make distributions in 1.5 mL centrifuge tubes according to the following: <br></strong>
 +
                                                Tube 1 (Blank Control): 100 μL incubation Buffer. <br>
 +
                                                Tube 2 (Negative Control): 25 μL diluted SYL3C-TEG-biotin + 25 μL 1×B&W Buffer. <br>
 +
                                                Tube 3 (Competition Group): 25 μL diluted SYL3C-TEG-biotin + 25 μL diluted C3-FITC. <br>
 +
                                                Tube 4 (Competition Group without EpCAM): 25 μL diluted SYL3C-TEG-biotin + 25 μL diluted C3-FITC. <br>
 +
                                                Tube 5 (Positive Control): 0.6 μL 100 μM C3-FITC + 100 μL incubation Buffer. <br>
 +
                                                Note: The Tube 3, 4 and 5 should be coated by tin foil properly after distributing. <br>
 +
                                                <strong>2.  Denature, anneal and renature: <br></strong>The Tube 2, 3, and 4 are denatured at 95°C for 5 minutes, then anneal to room temperature. <br>
 +
                                                <strong>3. Wash magnetic beads: <br></strong>
 +
                                                1) Resuspend the beads and vortex for 10 seconds to make them even. <br>
 +
                                                2) Transfer 75 μL of 10 mg / mL beads to 3 200 μL centrifuge tubes (ie 25 μL per tube). <br>
 +
                                                3) Add 25 μL of 2×B&W Buffer to each tube. <br>
 +
                                                4) Vortex for 5 seconds to resuspend. <br>
 +
                                                5) Place the tubes in a magnetic field for 1 minute, then aspirate the supernatant. <br>
 +
                                                6) Remove the tubes from the magnetic field and add 50 μL of 1×B&W Buffer to each tube. <br>
 +
                                                7) Repeat steps 4) to 5). <br>
 +
                                                8) Add 50 μL of 1×B&W Buffer to each tube. <br>
 +
                                                <strong>4.  Bind to magnetic beads: <br></strong>1) Add 50 μL of solution of Tube 2,3 and 4 from step 2 to 50 μL of washed beads, respectively. <br>
 +
                                                2) Vortex for 5 seconds to resuspend. <br>
 +
                                                3) Incubate at room temperature for 30 minutes in the dark. <br>
 +
                                                4) Vortex for 5 seconds to resuspend. <br>
 +
                                                5) Place the tubes in a magnetic field for 2 minute, then aspirate the supernatant. <br>
 +
                                                6) Remove the tubes from the magnetic field and add 100 μL of 1×B&W Buffer to each tube. <br>
 +
                                                7) Repeat steps 4) to 5). <br>
 +
                                                8) Add 100 μL of incubation Buffer to Tube2, 3 and 4, respectively. <br>
 +
                                                <strong>5.  Compete: <br></strong>1) Add 17 μL of diluted EpCAM to Tube 2 and 3. And add 17 μL of incubation Buffer to the last each tube. <br>
 +
                                                2) Incubate at room temperature for 40 minutes in the dark. <br>
 +
                                                3) Place the tubes in a magnetic field for 2~3 minutes, then pipette 100 μL of the supernatant into a new 200 μL centrifuge tube and mark it. <br>
 +
                                                4) Measure the fluorescence intensity of Tube 1, 5 and the supernatant from 3). <br>
 +
                                                Note: Before measuring, the solution of each tube will be further diluted by adding 3, 000 μL of incubation Buffer into it. The excitation wave length is 495 nm, and the range of emission wave length is from 500 nm to 600 nm.<br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading19">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse19" aria-expanded="false" aria-controls="collapse19">
 +
                                    IV. Appendices
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse19" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● Sequence of SYL3C-TEG-biotin: <br>
 +
                                                5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-TEG-Biotin-3' <br>
 +
                                                ● Sequence of C3-FITC: <br>
 +
                                                5'-CTCTGTAGTGTTTTTTTTTTTTTT-FITC-3' <br>
 +
                                                ● 2×Binding & Washing Buffer (pH 7.5) contains: <br>
 +
                                                10 mM Tris 1 mM EDTA 2 M NaCl <br>
 +
                                                ● Incubation Buffer (pH 7.5) contains: <br>
 +
                                                20 mM Tris 140 mM NaCl 5 mM KCl 1 mM MgCl<sub>2</sub> <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="expstep_name">Trans-cleavage activity of Cas12a</div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading113">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse113" aria-expanded="false" aria-controls="collapse113">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse113" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● Cas12a (Alt-R<sup>®</sup> CRISPR-Cas12a (Cpf1) System) <br>
 +
                                                ● crRNA (IDT<sup>®</sup>) <br>
 +
                                                ● TE Buffer (Sangon Biotech<sup>®</sup>) <br>
 +
                                                ● DNaseAlert<sup>TM</sup> Substrate Nuclease Detection System (IDT<sup>®</sup>, see Appendices) <br>
 +
                                                ● 21nt ssDNA (Borui<sup>TM</sup>, see Appendices) <br>
 +
                                                ● Black 96-well plate (Corning<sup>®</sup>) <br>
 +
                                                ● Microplate reader (Tecan Infinite<sup>®</sup> M200 Pro) <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading114_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse114_1" aria-expanded="false" aria-controls="collapse114_1">
 +
                                    II. Before experiment
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse114_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                ● Add 26.7 μL of filtered TE Buffer into the tube of crRNA to make a 75 μM stock. <br>
 +
                                                ● Add 88.6 μL of filtered TE Buffer into the tube of ssDNA to make a 100 μM stock.
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading114">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse114" aria-expanded="false" aria-controls="collapse114">
 +
                                    III. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse114" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                <strong>1.  Form the RNP complex: <br></strong>1) Prepare 3 200 μL tubes. Add 1 μL of Cas12a and 1 μL of diluted crRNA into each nuclease-free 200 μL tube. <br>
 +
                                                2) Incubate Cas12a with crRNA at 37℃ for 30 minutes to form the RNP complex.
 +
                                                <strong><br>2.  Pretreatment of substrate: <br></strong>1) Prepare 3 DNaseAlert<sup>TM</sup> Substrate single-use tubes. Add 5 μL of Nuclease-Free Water to each tube. <br>
 +
                                                2) Add 5 μL of 10×DNaseAlert<sup>TM</sup> Buffer to each tube. <br>
 +
                                                <strong>3.  Make distributions:</strong> <br> 1) Cas12a Group: DNaseAlert<sup>TM</sup> Substrate (from step 2) + 2 μL RNP complex (from step 1) + 1 μL diluted ssDNA + 37 μL filtered TE Buffer + 40 μL Nuclease-Free Water.<br>
 +
                                                2) Negative Control: DNaseAlertTM Substrate (from step 2) + 40 μL Nuclease-Free Water + 40 μL Nuclease-Free Water. <br>
 +
                                                3) Positive Control: DNaseAlertTM Substrate (from step 2) + 1 μL DNase I + 39 μL filtered TE Buffer + 40 μL Nuclease-Free Water. <br>
 +
                                                <strong>4.  Measure fluorescence intensity by microplate reader: <br></strong>1) Incubate the reaction system at 37℃ for 30 minutes, then transform the reaction system into the black 96-well plate. <br>
 +
                                                2) Before measure, add 12 μL of TE Buffer into each tube. <br>
 +
                                                3) Set temperature: 37℃, choose plate type: Black. Set excitation wavelength: 536 nm and emission wavelength: 556 nm. Choose mode: Optimal. <br>
 +
                                                4) Measure fluorescence intensity at 30 min, 40 min, 50 min, 60 min, 70 min, 90 min, 110 min (Timing is from the beginning of incubation). <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading115">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse115" aria-expanded="false" aria-controls="collapse115">
 +
                                    IV. Appendices
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse115" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● DNaseAlert<sup>TM</sup> Substrate Nuclease Detection System contains: <br>
 +
                                                1) DNaseAlert<sup>TM</sup> Substrate (25 single-use tubes (50 pmol per tube) or 2 tubes bulk substrate (2 nmol per tube)) <br>
 +
                                                2) DNaseAlert<sup>TM</sup> Buffer (250 μL) <br>
 +
                                                3) Nuclease-Free Water (2 mL) <br>
 +
                                                4) DNase I Enzyme (25 μL) <br>
 +
                                                5) Nuclease Decontamination Solution (50 mL) <br>
 +
                                                ● Sequence of 21nt ssDNA: <br>
 +
                                                5'-CAGGCCAACCCCCCATGACAA-3' <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="expstep_name">Signal transformation</div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading113_1_1">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse113_1_1" aria-expanded="false" aria-controls="collapse113_1_1">
 +
                                    I. Materials &amp; Apparatus
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse113_1_1" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p> ● TE Buffer (Sangon Biotech<sup>®</sup>) <br>
 +
                                                ● DNaseAlert<sup>TM</sup> Substrate Nuclease Detection System (IDT<sup>®</sup>, see Appendices) <br>
 +
                                                ● Fluorescence spectrometer (Shimadzu<sup>®</sup> RF-6000)
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading114_2_2">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse114_2_2" aria-expanded="false" aria-controls="collapse114_2_2">
 +
                                    II. Steps
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse114_2_2" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                <strong>  1.  Make distributions: <br></strong>Add reagent into 2 DNaseAlert<sup>TM</sup> Substrate single-use tubes according to following instruction. Avoiding light is necessary during the whole process. <br>
 +
                                                1) Negative Control: 5 μL Nuclease-Free Water + 5 μL 10×DNaseAlert Buffer + 40 μL Nuclease-Free Water + 40 μL Nuclease-Free Water. <br>
 +
                                                2) Enzyme Group: 5 μL Nuclease-Free Water + 5 μL 10×DNaseAlert Buffer + 39 μL Nuclease-Free Water + 40 μL Nuclease-Free Water. <br>
 +
                                                Place the two tubes at room temperature for 30 minutes to enough dissolve fluorescent substance. <br>
 +
                                                <strong>2.  Make distributions further according to the time gradient: <br></strong>1) Prepare 6 200μL-PCR tubes in advance, then divide into 2 groups (3 tubes per group). Mark "W" and "I" on the tubes of two groups, respectively. Further mark the tubes according to the time gradient of 3 min, 15 min and 30 min (e.g. "W 3", "I 15"). <br>
 +
                                                2) Add 1 μL of DNase I into the DNaseAlert<sup>TM</sup> Substrate single-use tube of Enzyme Group. <br>
 +
                                                3) Mix immediately, then transfer 30 μL of reaction liquid from each single-use tube to each PCR tube marked before. Place all PCR tubes in 37℃ water bath. Then start timing. <br>
 +
                                                4) Each tube: React for corresponding time, then measure florescence intensity immediately. <br>
 +
                                                <strong>3.  Measure fluorescence intensity: <br></strong>1) Turn on the instrument for 30 minutes before measuring. <br>
 +
                                                2) Choose "Emission Mode". The excitation wave length is 536 nm, and the range of emission wave length is from 540 nm to 580 nm. <br>
 +
                                                3) Before measuring, dilute the reaction liquid to about 3 mL with TE Buffer in the fluorescence cuvette. <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="panel">
 +
                                    <div class="panel-heading" role="tab" id="heading115_2">
 +
                                        <h4 class="panel-title">
 +
                                <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse115_2" aria-expanded="false" aria-controls="collapse115_2">
 +
                                    III. Appendices
 +
                                </a>
 +
                            </h4>
 +
                                    </div>
 +
                                    <div id="collapse115_2" class="panel-collapse collapse" role="tabpanel">
 +
                                        <div class="panel-body">
 +
                                            <p>
 +
                                                ● DNaseAlert<sup>TM</sup> Substrate Nuclease Detection System contains: <br>
 +
                                                1) DNaseAlert<sup>TM</sup> Substrate (25 single-use tubes (50 pmol per tube) or 2 tubes bulk substrate (2 nmol per tube)) <br>
 +
                                                2) DNaseAlert<sup>TM</sup> Buffer (250 μL) <br>
 +
                                                3) Nuclease-Free Water (2 mL) <br>
 +
                                                4) DNase I Enzyme (25 μL) <br>
 +
                                                5) Nuclease Decontamination Solution (50 mL) <br>
 +
                                            </p>
 +
                                        </div>
 +
                                    </div>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 
                 </div>
 
                 </div>
                <h1>Background</h1>
 
                <p>Outer-membrane vesicles (OMVs) are lipid vesicles commonly produced by Gram-negative bacteria, which are filled with periplasmic content and are 20-250 nm in diameters (Figure 1). The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, and enabling bacterial delivery of nucleic acids and proteins. A recent paper by Kojima R et al. 2018, demonstrated an EXOtic device that can produce exosomes with specific nucleic acids cargo (Figure 2). We were impressed by the amazing OMVs and EXOtic device and came up with an idea to design a cell-free system to enable specific siRNA to be encapsulated into OMVs for cancer treatment.
 
                </p>
 
                <p class="F2">
 
                    <img src="https://static.igem.org/mediawiki/2018/4/43/T--XMU-China--OMVs11.png">
 
                    <p class="Figure_word">Figure 2. The cell envelope of Gram-negative bacteria consists of two membranes, the outer membrane and the cytoplasmic membrane. Envelope stability comes from various crosslinks including the non-covalent interactions between the PG and the porin outer-membrane protein A (OmpA).</p>
 
                </p>
 
                <p class="F2">
 
                    <img src="https://static.igem.org/mediawiki/2018/c/c0/T--XMU-China--OMVs12.png">
 
                    <p class="Figure_word">Figure 3. Schematic illustration of the EXOtic devices. Exosomes are nanoscale extracellular lipid bilayer vesicles of endocytic origin, and they are secreted by nearly all cell types in physiological and pathological conditions. Exosomes containing the RNA packaging device (CD63-L7Ae) and mRNA (e.g., nluc-C/Dbox) can efficiently deliver specific nucleic acids.</p>
 
                </p>
 
                <h1>Abstract</h1>
 
                <p>Not only eukaryotes but also prokaryotes can produce nanoscale bubbles to fulfill diverse functions, such as cellular communication, surface modifications and the elimination of undesired components. Additionally, because of this functional versatility, OMVs have been explored as a platform for bioengineering applications. This year, we XMU-China decide to utilize OMVs as a cell-free platform to deliver our nucleic acids agents to facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.</p>
 
                <p class="F3">
 
                    <img src="https://static.igem.org/mediawiki/2018/9/9d/T--XMU-China--OMVs13.png">
 
                    <p class="Figure_word">Figure 4. We utilize a split protein SpyTag/SpyCatcher (ST/SC) bioconjugation system to create a synthetic linkage between protein OmpA and archaeal ribosomal protein L7Ae. We fuse SpyTag with OmpA at its C-termini and N-termini respectively.</p>
 
                </p>
 
                <p class="F3">
 
                    <img src="https://static.igem.org/mediawiki/2018/d/da/T--XMU-China--OMVs14.png">
 
                    <p class="Figure_word">Figure 5. After the induction of IPTG and Arabinose, we can get L7Ae-SpyCatcher and siRNA-C/Dbox. Archaeal ribosomal protein L7Ae owns the ability to bind with C/Dbox RNA structure.</p>
 
                </p>
 
                <p class="F4">
 
                    <img src="https://static.igem.org/mediawiki/2018/9/97/T--XMU-China--OMVs15.png">
 
                    <p class="Figure_word">Figure 6. With the interaction between SpyTag and SpyCatcher, and the ability of L7Ae to be bind with C/Dbox, we can produce customizable and cell-free OMVs containing specific siRNA to traget for oncogenic gene.</p>
 
                </p>
 
                <h1 class="reference">Reference</h1>
 
                <p>
 
                    [1] Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment[J]. <i>Nature Communications.</i> <strong>2018</strong>, 9(1):1305. <br>
 
                    [2] Alves N J, Turner K B, Medintz I L, et al. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles: [J]. <i>Scientific Reports</i>, <strong>2016</strong>, 6:24866. <br>
 
                    [3] Schwechheimer C, Kuehn M J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. [J]. <i>Nature Reviews Microbiology</i>, <strong>2015</strong>, 13(10):605-19. <br>
 
                    [4] Vanaja S K, Russo A J, Behl B, et al. Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. [J]. <i>Cell</i>, <strong>2016</strong>, 165(5):1106-1119. <br>
 
                    [5] Kamerkar S, Lebleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. <i>Nature</i>, <strong>2017</strong>, 546(7659):498-503. <br>
 
                    [6] https://en.wikipedia.org/wiki/Pancreatic_cancer<br>
 
                </p>
 
            </section>
 
            <section id="Supporting" class="js-scroll-step">
 
                <div class="headline">
 
                    Supporting
 
                </div>
 
                <h1>Background</h1>
 
                <p>Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis.<sup>[1]</sup>Tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation olerance.<sup>[2]</sup>2012, Takekazu Kunieda and his team identified five abundant heat-soluble proteins in the tardigrades, which can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms.<sup>[1]</sup>
 
                </p>
 
                <p class="F4">
 
                    <img src="https://static.igem.org/mediawiki/2018/2/2d/T--XMU-China--TDP1.png">
 
                    <p class="Figure_word">Figure 7. Stage Photo of Tardigrades in Ant-Man 2.</p>
 
                </p>
 
                <p>In 2017, Thomas C. Boothby and his team segregated three TDP proteins in the water bears and explored their mechanism of action<sup>[3]</sup>. This is a schematic diagram of the mechanism they have done so far. At the same time, one of the 2017 iGEM teams <a href="https://2017.igem.org/Team:TUDelft/Design"><span class="click_here">TUDelft</span></a>, attempted to preserve the Cas13a protein using the TDP proteins, and they also tried to preserve the bacteria with the TDP proteins and obtained amazing outcome.
 
                    In our project, we are going to use TDPs to help preserve the protein Cas12a and OMVs.
 
                </p>
 
                <h1>Abstract</h1>
 
                <p>We have carried out research on TDP proteins this year. On the one hand, we plan to preserve the Cas12a required for protein detection and OMVs required for treatment with TDPs. On the other hand, as the wiki says, TDP is a new biological activity protector with great potential. So we are going to use TDP proteins to simplify existing methods of preserving proteins and bacteria.
 
                    There are two novel protein families with distinct subcellular localizations named Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. In our project, SAHS1 was used to preserve the proteins and CAHS1 was used for the preservation of the bacteria.
 
                </p>
 
                <p class="F4">
 
                    <img src="https://static.igem.org/mediawiki/2018/a/aa/T--XMU-China--TDP2.png">
 
                    <p class="Figure_word">Figure 8. The Expression of TDPs When The Tardigrades Suffer Form Fast Drying and Slow Drying.(Thomas C. Boothby et al. 2017).</p>
 
                </p>
 
                <h1>Reference</h1>
 
                <p class="reference">
 
                    [1]. Yamaguchi A. Two Novel Heat-Soluble Protein Families Abundantly Expressed in an Anhydrobiotic Tardigrade. <i>PLoS ONE</i>, <strong>2012</strong>;7(8):e44209. <br>
 
[2]. Boothby TC. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. <i>Mol Cell</i>. <strong>2017</strong> Mar16;65(6):975-984.e5.
 
 
                </p>
 
 
             </section>
 
             </section>
 +
           
 
         </div>
 
         </div>
        <!-- <script type="text/javascript" src="js/right.js"></script> -->
 
 
         <script src="https://2018.igem.org/Team:XMU-China/js/right?action=raw&ctype=text/javascript"></script>
 
         <script src="https://2018.igem.org/Team:XMU-China/js/right?action=raw&ctype=text/javascript"></script>
 
         <button class="material-scrolltop" type="button"></button>
 
         <button class="material-scrolltop" type="button"></button>
Line 322: Line 778:
 
         window.jQuery || document.write('<script src="js/jquery-1.11.0.min.js"><\/script>')
 
         window.jQuery || document.write('<script src="js/jquery-1.11.0.min.js"><\/script>')
 
         </script>
 
         </script>
        <!-- <script src="js/material-scrolltop.js"></script> -->
 
 
         <script src="https://2018.igem.org/Team:XMU-China/js/material-scrolltop?action=raw&ctype=text/javascript"></script>
 
         <script src="https://2018.igem.org/Team:XMU-China/js/material-scrolltop?action=raw&ctype=text/javascript"></script>
 
         <div class="footer">
 
         <div class="footer">
Line 350: Line 805:
 
                 <div class="clear"></div>
 
                 <div class="clear"></div>
 
             </div>
 
             </div>
 +
            <div class="bottom"></div>
 
         </div>
 
         </div>
        <div class="bottom"></div>
 
 
</body>
 
</body>
  
 
</html>
 
</html>

Revision as of 17:00, 16 October 2018

Team:XMU-China/Human Practices - 2018.igem.org

Human Practices
Competition experiment
Verifying the EpCAM's activity

● Ni-bead with EpCAM coated
● 5% PBS-BSA Buffer (see Appendices)
● Antibody of EpCAM (PE labeled)
● Flow Cytometer (BD FACSVerseTM)

Prepare 5% PBS-BSA: Weigh 0.5 g BSA, then add 1×PBS to the volume being 10 mL, then mix it evenly to make sure the solid dissolved.

1. Make distributions:
Add reagent to 3 1.5 mL tubes respectively according to the following instructions. Add PBS-BSA first then the antibody.
1) Sample Group: 5 μL EpCAM-Ni bead + 185 μL PBS-BSA + 10 μL antibody of EpCAM.
2) Positive Control: 5 μL EpCAM-Ni bead + 185 μL PBS-BSA + 10 μL antibody of EpCAM.
3) Negative Control: 5 μL EpCAM-Ni bead + 195 μL PBS-BSA.
2. Wash the free antibody:
Take out the filter of a 10 μL filter tip and insert it into a 200 μL tip to make a 200 μL filter tip.
The above three tubes are respectively subjected to the following operations:
1) Transfer the 200 μL of solution to the 200 μL filter tip, then pipette it up and down to mix evenly.
2) Use a syringe to squeeze out the solution in the 200 μL filter tip.
3) Remove the filter tip and place it in the previous tube.
4) Rinse the tip with 450 μL of 1×PBS Buffer.
5) Take out the tip, then transfer 150μL of Buffer from 4) to the filter tip and pipette up and down to mix evenly.
6) Use a syringe to squeeze out the solution in the 200 μL filter tip.
7) Repeat 5) to 6) three times, at which time 450 μL of the solution from 4) was filtered.
8) Use a pair of scissors to cut the thin end of the filter's head and loosen the filter.
9) Transfer 200 μL of 1×PBS Buffer to a new 1.5 ml tube.
10) Use a pipette to insert the cut filter tip into the tube from 9) and pipette it up and down for several times.
3. Flow Cytometer test:
Precautions:
1) Turn on the regulator first, then turn on the computer, and finally turn on the instrument 30 minutes before measuring.
2) Check if the sheath tank has a solution, if the waste container is full, and if the dehumidifier is turned on.
3) Remember to perform a two-step self-test.
4) Please use daily clean after measuring.
5) Shutdown sequence: Click shut down on the software, turn off the instrument, then turn off the computer, and finally turn off the regulator.

SYL3C binding EpCAM

● SYL3C-FAM (Sangon Biotech®, see Appendices)
● EpCAM (ACROBiosystems®)
● Binding Buffer (see Appendices)
● Fluorescence Spectrometer (Shimadzu® RF-6000)
● Polarizer (from a pair of 3D glasses)

1. Make distributions in 1.5 mL centrifuge tubes:
1) Tube 1 (Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-FAM + 179 μL binding Buffer.
2) Tube 2 (Aptamer-EpCAM Group): 1 μL 100 μM (100 pmol) SYL3C-FAM + 179 μL binding Buffer.
2. Sample processing:
The above 2 tubes are simultaneously subjected to the following steps:
1) Denature at 95℃ for 10 minutes.
2) Remove the tubes, then put them at room temperature for about 20 minutes.
3) Add 20 μL of 100 μg/mL EpCAM protein to Tube 2.
4) Add 20 μL of binding Buffer to Tube 1.
5) Incubate all tubes in a shaker for 40 minutes (37℃, 200 rpm).
Note: Avoiding light in whole process is necessary.
3. Measure fluorescence intensity from vertical/parallel direction:
1) Turn on the instrument for 30 minutes before measuring.
2) Choose "Emission Mode". The excitation wave length is 495 nm, and the range of emission wave length is from 500 nm to 600 nm.
3) Before measuring, dilute the solution from step 2 to about 3 mL with binding Buffer in the fluorescence cuvette.
4) Attach a polarizer to the exit of the excitation light, and attach another polarizer to the receiving inlet of the emission light to make sure the polarization directions of the two polarizers are vertical/parallel.
5) Start measuring to obtain I, max (Aptamer), I, max (Aptamer), I, max (Aptamer + EpCAM), I, max (Aptamer + EpCAM).

● Sequence of SYL3C-FAM:
5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-FAM-3'
● Binding Buffer (pH 7.3~7.5) contains:
1×PBS Buffer with 5 mM MgCl2

Forming double strands

● SYL3C-TEG-biotin (BoruiTM, see Appendices)
● C3-FITC (BoruiTM, see Appendices)
● C4-FITC (BoruiTM, see Appendices)
● Binding Buffer (see Appendices)
● 50×TAE concentrate solution (Solarbio®)
● Agarose (Biowest®)
● DNA dye (TransGen® GelStain)
● Distilled water
● Microwave oven
● 10×Loading Buffer (Takara®)
● Electrophoresis instrument

Dilute 50×TAE concentrate solution to 1×TAE Buffer with distilled water.

1. Make distributions in 1.5 mL centrifuge tubes according to the following:
1) Tube 1 (Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin + 19 μL binding Buffer.
2) Tube 2 (C4 Group): 1 μL 100 μM (100 pmol) C4-FITC + 19 μL binding Buffer.
3) Tube 3 (C3 Group): 1 μL 100 μM (100 pmol) C3-FITC + 19 μL binding Buffer.
4) Tube 4 (C4&Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin +1 μL 100 μM (100 pmol) C4-FITC + 18 μL binding Buffer.
5) Tube 5 (C3&Aptamer Group): 1 μL 100 μM (100 pmol) SYL3C-TEG-biotin +1 μL 100 μM (100 pmol) C3-FITC + 18 μL binding Buffer.
Note: The Tube 2, 3, 4 and 5 should be coated by tin foil properly after distributing.
2. Sample processing:
The above 5 tubes are simultaneously subjected to the following steps:
1) Denature at 95℃ for 10 minutes.
2) Anneal to room temperature for 20 minutes.
3. Prepare 3% agarose gel:
1) Weigh 0.9 g of agarose in a 100 mL Erlenmeyer flask.
2) Add 30 mL of 1×TAE Buffer into the flask from 1).
3) Make agarose melt by microwave oven (medium-high heat, about 3 minutes).
4) Add 3 μL of GelStain, mix by shocking.
5) Assemble gel pouring apparatus by inserting gate into slots.
6) Pour agarose gel into the gel tray.
7) Cool for 40 minutes to solidify the DNA agarose gel.
8) Remove the pouring apparatus, put the gel into an electrophoresis instrument.
4. Electrophoresis:
1) Add 2 μL of 10×Loading Buffer to each tube, then pipette up and down to evenly mix.
2) Pipette all samples which have been mixed with loading Buffer into the slots.
3) Turn on the electrophoresis instrument, set the working electric current at 150 mA and the working electric voltage at 110 V.
4) Electrophoresis for 50 minutes.
5. Gel imaging:
Turn off the instrument, take the gel into the gel formatter to take and save photos.

● Sequence of SYL3C-TEG-biotin:
5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-TEG-Biotin-3'
● Sequence of C3-FITC:
5'-CTCTGTAGTGTTTTTTTTTTTTTT-FITC-3'
● Sequence of C4-FITC:
5'-TCTGTAGTGTTTTTTTTTTTTTTT-FITC-3'
● Binding Buffer (pH 7.3~7.5)contains:
1×PBS Buffer with 5 mM MgCl2

Competition

● SYL3C-TEG-biotin (BoruiTM, see Appendices)
● C3-FITC (BoruiTM, see Appendices)
● EpCAM (ACROBiosystems®)
● Magnetic Beads (InvitrogenTM)
● Binding & Washing Buffer (see Appendices)
● Incubation Buffer (see Appendices)
● Vortex (IKA® lab dancer)
● Fluorescence Spectrometer (Shimadzu® RF-6000)

1.8 μL of 100 μM SYL3C-TEG-biotin is diluted by 1×B&W Buffer up to 75 μL, and 1.2 μL of C3-FITC is also diluted by 1×B&W up to 50 μL.
The tube of 100 μg/mL C3-FITC should be coated properly by tin foil in order to avoid being quenched.

1. Make distributions in 1.5 mL centrifuge tubes according to the following:
Tube 1 (Blank Control): 100 μL incubation Buffer.
Tube 2 (Negative Control): 25 μL diluted SYL3C-TEG-biotin + 25 μL 1×B&W Buffer.
Tube 3 (Competition Group): 25 μL diluted SYL3C-TEG-biotin + 25 μL diluted C3-FITC.
Tube 4 (Competition Group without EpCAM): 25 μL diluted SYL3C-TEG-biotin + 25 μL diluted C3-FITC.
Tube 5 (Positive Control): 0.6 μL 100 μM C3-FITC + 100 μL incubation Buffer.
Note: The Tube 3, 4 and 5 should be coated by tin foil properly after distributing.
2. Denature, anneal and renature:
The Tube 2, 3, and 4 are denatured at 95°C for 5 minutes, then anneal to room temperature.
3. Wash magnetic beads:
1) Resuspend the beads and vortex for 10 seconds to make them even.
2) Transfer 75 μL of 10 mg / mL beads to 3 200 μL centrifuge tubes (ie 25 μL per tube).
3) Add 25 μL of 2×B&W Buffer to each tube.
4) Vortex for 5 seconds to resuspend.
5) Place the tubes in a magnetic field for 1 minute, then aspirate the supernatant.
6) Remove the tubes from the magnetic field and add 50 μL of 1×B&W Buffer to each tube.
7) Repeat steps 4) to 5).
8) Add 50 μL of 1×B&W Buffer to each tube.
4. Bind to magnetic beads:
1) Add 50 μL of solution of Tube 2,3 and 4 from step 2 to 50 μL of washed beads, respectively.
2) Vortex for 5 seconds to resuspend.
3) Incubate at room temperature for 30 minutes in the dark.
4) Vortex for 5 seconds to resuspend.
5) Place the tubes in a magnetic field for 2 minute, then aspirate the supernatant.
6) Remove the tubes from the magnetic field and add 100 μL of 1×B&W Buffer to each tube.
7) Repeat steps 4) to 5).
8) Add 100 μL of incubation Buffer to Tube2, 3 and 4, respectively.
5. Compete:
1) Add 17 μL of diluted EpCAM to Tube 2 and 3. And add 17 μL of incubation Buffer to the last each tube.
2) Incubate at room temperature for 40 minutes in the dark.
3) Place the tubes in a magnetic field for 2~3 minutes, then pipette 100 μL of the supernatant into a new 200 μL centrifuge tube and mark it.
4) Measure the fluorescence intensity of Tube 1, 5 and the supernatant from 3).
Note: Before measuring, the solution of each tube will be further diluted by adding 3, 000 μL of incubation Buffer into it. The excitation wave length is 495 nm, and the range of emission wave length is from 500 nm to 600 nm.

● Sequence of SYL3C-TEG-biotin:
5'-CACTACAGAGGTTGCGTCTGTCCCACGTTGTCATGGGGGGTTGGCCTG-TEG-Biotin-3'
● Sequence of C3-FITC:
5'-CTCTGTAGTGTTTTTTTTTTTTTT-FITC-3'
● 2×Binding & Washing Buffer (pH 7.5) contains:
10 mM Tris 1 mM EDTA 2 M NaCl
● Incubation Buffer (pH 7.5) contains:
20 mM Tris 140 mM NaCl 5 mM KCl 1 mM MgCl2

Trans-cleavage activity of Cas12a

● Cas12a (Alt-R® CRISPR-Cas12a (Cpf1) System)
● crRNA (IDT®)
● TE Buffer (Sangon Biotech®)
● DNaseAlertTM Substrate Nuclease Detection System (IDT®, see Appendices)
● 21nt ssDNA (BoruiTM, see Appendices)
● Black 96-well plate (Corning®)
● Microplate reader (Tecan Infinite® M200 Pro)

● Add 26.7 μL of filtered TE Buffer into the tube of crRNA to make a 75 μM stock.
● Add 88.6 μL of filtered TE Buffer into the tube of ssDNA to make a 100 μM stock.

1. Form the RNP complex:
1) Prepare 3 200 μL tubes. Add 1 μL of Cas12a and 1 μL of diluted crRNA into each nuclease-free 200 μL tube.
2) Incubate Cas12a with crRNA at 37℃ for 30 minutes to form the RNP complex.
2. Pretreatment of substrate:
1) Prepare 3 DNaseAlertTM Substrate single-use tubes. Add 5 μL of Nuclease-Free Water to each tube.
2) Add 5 μL of 10×DNaseAlertTM Buffer to each tube.
3. Make distributions:
1) Cas12a Group: DNaseAlertTM Substrate (from step 2) + 2 μL RNP complex (from step 1) + 1 μL diluted ssDNA + 37 μL filtered TE Buffer + 40 μL Nuclease-Free Water.
2) Negative Control: DNaseAlertTM Substrate (from step 2) + 40 μL Nuclease-Free Water + 40 μL Nuclease-Free Water.
3) Positive Control: DNaseAlertTM Substrate (from step 2) + 1 μL DNase I + 39 μL filtered TE Buffer + 40 μL Nuclease-Free Water.
4. Measure fluorescence intensity by microplate reader:
1) Incubate the reaction system at 37℃ for 30 minutes, then transform the reaction system into the black 96-well plate.
2) Before measure, add 12 μL of TE Buffer into each tube.
3) Set temperature: 37℃, choose plate type: Black. Set excitation wavelength: 536 nm and emission wavelength: 556 nm. Choose mode: Optimal.
4) Measure fluorescence intensity at 30 min, 40 min, 50 min, 60 min, 70 min, 90 min, 110 min (Timing is from the beginning of incubation).

● DNaseAlertTM Substrate Nuclease Detection System contains:
1) DNaseAlertTM Substrate (25 single-use tubes (50 pmol per tube) or 2 tubes bulk substrate (2 nmol per tube))
2) DNaseAlertTM Buffer (250 μL)
3) Nuclease-Free Water (2 mL)
4) DNase I Enzyme (25 μL)
5) Nuclease Decontamination Solution (50 mL)
● Sequence of 21nt ssDNA:
5'-CAGGCCAACCCCCCATGACAA-3'

Signal transformation

● TE Buffer (Sangon Biotech®)
● DNaseAlertTM Substrate Nuclease Detection System (IDT®, see Appendices)
● Fluorescence spectrometer (Shimadzu® RF-6000)

1. Make distributions:
Add reagent into 2 DNaseAlertTM Substrate single-use tubes according to following instruction. Avoiding light is necessary during the whole process.
1) Negative Control: 5 μL Nuclease-Free Water + 5 μL 10×DNaseAlert Buffer + 40 μL Nuclease-Free Water + 40 μL Nuclease-Free Water.
2) Enzyme Group: 5 μL Nuclease-Free Water + 5 μL 10×DNaseAlert Buffer + 39 μL Nuclease-Free Water + 40 μL Nuclease-Free Water.
Place the two tubes at room temperature for 30 minutes to enough dissolve fluorescent substance.
2. Make distributions further according to the time gradient:
1) Prepare 6 200μL-PCR tubes in advance, then divide into 2 groups (3 tubes per group). Mark "W" and "I" on the tubes of two groups, respectively. Further mark the tubes according to the time gradient of 3 min, 15 min and 30 min (e.g. "W 3", "I 15").
2) Add 1 μL of DNase I into the DNaseAlertTM Substrate single-use tube of Enzyme Group.
3) Mix immediately, then transfer 30 μL of reaction liquid from each single-use tube to each PCR tube marked before. Place all PCR tubes in 37℃ water bath. Then start timing.
4) Each tube: React for corresponding time, then measure florescence intensity immediately.
3. Measure fluorescence intensity:
1) Turn on the instrument for 30 minutes before measuring.
2) Choose "Emission Mode". The excitation wave length is 536 nm, and the range of emission wave length is from 540 nm to 580 nm.
3) Before measuring, dilute the reaction liquid to about 3 mL with TE Buffer in the fluorescence cuvette.

● DNaseAlertTM Substrate Nuclease Detection System contains:
1) DNaseAlertTM Substrate (25 single-use tubes (50 pmol per tube) or 2 tubes bulk substrate (2 nmol per tube))
2) DNaseAlertTM Buffer (250 μL)
3) Nuclease-Free Water (2 mL)
4) DNase I Enzyme (25 μL)
5) Nuclease Decontamination Solution (50 mL)