Difference between revisions of "Team:NTHU Formosa/Nanobody"

(Created page with "{{NTHU_Formosa}} {{NTHU_Formosa/NavBar}} <html> <head> <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/Lato&act...")
 
Line 8: Line 8:
 
   <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/initial&action=raw&ctype=text/css">
 
   <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/initial&action=raw&ctype=text/css">
 
   <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/wordcss0&action=raw&ctype=text/css">
 
   <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/wordcss0&action=raw&ctype=text/css">
 
+
  <link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/wordcss&action=raw&ctype=text/css">
<link rel="stylesheet" type="text/css" href="https://2018.igem.org/wiki/index.php?title=Template:NTHU_Formosa/wordcss&action=raw&ctype=text/css">
+
  
 
   <style>
 
   <style>
Line 25: Line 24:
  
 
     /* mouse over link */
 
     /* mouse over link */
 
  
 
     a:hover {
 
     a:hover {
 
       color: hotpink;
 
       color: hotpink;
 
       cursor: pointer;
 
       cursor: pointer;
 +
    }
 +
 +
 +
    /* Table */
 +
 +
    table {
 +
      font-family: "Josefin Sans", "JosefinSans-Bold", NotoSansCJKtc-Regular, 'Noto Sans', "微軟雅黑", "Microsoft YaHei", Helvetica, sans-serif;
 +
      font-size: 22px;
 +
      border-collapse: collapse;
 +
      width: 100%;
 +
    }
 +
 +
    td,
 +
    th {
 +
      border: 1px solid #dddddd;
 +
      text-align: left;
 +
      padding: 8px;
 +
    }
 +
 +
    tr:nth-child(even) {
 +
      background-color: #dddddd;
 
     }
 
     }
  
 
     /* selected link */
 
     /* selected link */
  
a:active {
+
    a:active {
 
       color: blue;
 
       color: blue;
 
     }
 
     }
 
     
 
 
   </style>
 
   </style>
 
</head>
 
</head>
  
 
+
 
 
+
 
      <br>
+
 
      <br><br>
+
<!-- Main Section -->
 
<div class="w3-container w3-padding-64 w3-center">
 
<div class="w3-container w3-padding-64 w3-center">
   <div class="w3-content" style="font-family: " Microsoft YaHei ",Helvetica,sans-serif;">
+
   <div class="w3-content">
      
+
     <br>
     <h2 class="w3-center" style="font-size:60px;"><b>Nanobody</b></h2>
+
     <br>
 +
    <br>
 +
        <h2 class="w3-center" style="font-size:60px;"><b>Nanobody</b></h2><br>
  
 
     <p class="w3-justify">
 
     <p class="w3-justify">
      <br>TEV proteases are the 27kDa catalytic domains of the NIa (Nuclear Inclusion a) protein encoded by Tobacco Etch Virus (TEV), where TEV proteases cut polyproteins into single proteins during biogenesis. TEV proteases recognize a linear epitope of the general form E-Xaa-Xaa-Y-Xaa-Q-(G/S) and cut the linkage between Q and G/S (Xaa can be freely substituted because variability in these positions was found in the natural cleavage sites of TEV’s polyprotein). Comparison of cleavage efficiency of different substract sequences demonstrated that “ENLYFQS” is the most efficient substrate sequence. The high-specificity of TEV’s cleavage makes it a popular tool for direct expression in living cells and protein purification.</p><br><br>
+
Nanobodies are single variable domain antibody fragments (VHH) derived from heavy-chain only antibodies discovered and identified in at least two types of organisms, camelidae (e.g., camel and llama) and cartilaginous fish (e.g., nurse shark and Wobbegong).<br><br>
 +
     
 +
The molecular size of nanobody is about 3 nm (15kDa), 1/10000 of hair diameter. Such property earned it the name, nanobody. They are more hydrophilic than conventional antibodies. They withstand big pH variation. Their small size gives them the ability to penetrate the tissue faster and to reach deeper into the binding pockets of enzymes. Being able to refold after heat denaturation keeps nanobodies functional and active at 70°C or 2-hour 90°C heat shock.<br><br>
 +
     
 +
Nanobodies retain full antigen binding capacity and are considerably stable. Conventional antibodies are composed with variable domains along with heavy chains and light chains. When binding with proteins, all three parts of them are necessarily involved. Hence, nanobodies’ comparably simple structure greatly increases their antigen binding affinity. What’s even better is that it’s less costly to make nanobodies than antibodies.<br><br>
 +
     
 +
Compared with antibodies, the unique features that nanobodies possess make them ideal for therapeutic and bioengineering tools. As a result, nanobodies are applied in our mechanism.</p><br><br>
 
      
 
      
   
 
   
 
    <p class="w3-justify" style="font-size:25px;"></p>                         
 
                                         
 
  
 +
    <body>
 +
 +
 +
 +
      <table>
 +
        <tr>
 +
          <th>Name</th>
 +
          <th>Conventional antibody</th>
 +
          <th>Nanobody</th>
 +
        </tr>
 +
        <tr>
 +
          <td>Size</td>
 +
          <td>150–160 kDa</td>
 +
          <td>12-15 kDa</td>
 +
        </tr>
 +
 +
        <tr>
 +
          <td>Composition</td>
 +
          <td>Variable domains + heavy chains + light chains</td>
 +
          <td>Variable domain fragments</td>
 +
        </tr>
 +
 +
        <tr>
 +
          <td>Structure(in comparison)</td>
 +
          <td>Complex</td>
 +
          <td>Simple</td>
 +
        </tr>
 +
 +
        <tr>
 +
          <td>Antigen binding affinity</td>
 +
          <td>High</td>
 +
          <td>Even better(nano- to- picomolar affinities)</td>
 +
        </tr>
 +
 +
        <tr>
 +
          <td>Thermal Stability</td>
 +
          <td>65°C for 20 mins diminishes the activities of almost all antibodies</td>
 +
          <td>Highly heat-resistant (functional and active at 70°C or even at 2-hour 90°C heat shock)</td>
 +
        </tr>
 +
 +
        <tr>
 +
          <td>Price</td>
 +
          <td>Varies with the products</td>
 +
          <td>Less expensive than antibodies</td>
 +
        </tr>
 +
 +
 +
      </table>
 +
 +
    </body>
 +
    <br>
 +
    <br>
 
      
 
      
  
Line 64: Line 137:
 
</div>
 
</div>
  
<!-- Trigger/Open The Modal -->
 
<!-- <a id="myLink"><u>Open Modal</u></a> -->
 
  
<!-- The Modal Box-->
 
<div id="myModal" class="modal">
 
  <!-- Modal content -->
 
  <div class="modal-content">
 
    <span class="close">&times;</span>
 
    <p>Description text in the box. Image can also be included</p>
 
  </div>
 
</div>
 
  
 
<!-- Modal script, DO NOT MODIFY!!! -->
 
<!-- Modal script, DO NOT MODIFY!!! -->

Revision as of 14:32, 17 October 2018




Nanobody


Nanobodies are single variable domain antibody fragments (VHH) derived from heavy-chain only antibodies discovered and identified in at least two types of organisms, camelidae (e.g., camel and llama) and cartilaginous fish (e.g., nurse shark and Wobbegong).

The molecular size of nanobody is about 3 nm (15kDa), 1/10000 of hair diameter. Such property earned it the name, nanobody. They are more hydrophilic than conventional antibodies. They withstand big pH variation. Their small size gives them the ability to penetrate the tissue faster and to reach deeper into the binding pockets of enzymes. Being able to refold after heat denaturation keeps nanobodies functional and active at 70°C or 2-hour 90°C heat shock.

Nanobodies retain full antigen binding capacity and are considerably stable. Conventional antibodies are composed with variable domains along with heavy chains and light chains. When binding with proteins, all three parts of them are necessarily involved. Hence, nanobodies’ comparably simple structure greatly increases their antigen binding affinity. What’s even better is that it’s less costly to make nanobodies than antibodies.

Compared with antibodies, the unique features that nanobodies possess make them ideal for therapeutic and bioengineering tools. As a result, nanobodies are applied in our mechanism.



Name Conventional antibody Nanobody
Size 150–160 kDa 12-15 kDa
Composition Variable domains + heavy chains + light chains Variable domain fragments
Structure(in comparison) Complex Simple
Antigen binding affinity High Even better(nano- to- picomolar affinities)
Thermal Stability 65°C for 20 mins diminishes the activities of almost all antibodies Highly heat-resistant (functional and active at 70°C or even at 2-hour 90°C heat shock)
Price Varies with the products Less expensive than antibodies