Difference between revisions of "Team:NAU-CHINA/Model"

 
(48 intermediate revisions by 6 users not shown)
Line 1: Line 1:
 
{{NAU-CHINA}}
 
{{NAU-CHINA}}
 +
{{NAU-CHINA/header}}
 
<html>
 
<html>
 +
<head>
 +
    <meta charset="utf-8" />
 +
    <title>Engagement</title>
 +
    <script>
 +
        $(document).ready(function () {
 +
            $('#banner img').attr('src', 'https://static.igem.org/mediawiki/2018/b/b4/T--NAU-China--bannermodeloverview.png')
 +
        });
 +
    </script>
 +
    <style>
 +
        .top-title {
 +
            color: #6d0032 !important;
 +
        }
 +
          .main-content h1 {
 +
            font-family: 'Avenir Next Condensed',sans-serif;
 +
            color:  #6d0032 !important;
 +
            margin:32px 0 !important;
 +
            margin-left:40px !important;
 +
            font-size:48px;
 +
            font-weight:bold !important;
 +
        }
 +
    </style>
 +
</head>
 +
<body>
 +
    <div class="topLine">
 +
        <p class="top-title">Model</p>
 +
        <p class="sec-title">Overview</p>
 +
    </div>
 +
    <a href="https://2018.igem.org/Team:NAU-CHINA/Model%20Details">
 +
        <img id="icon1" class="guide-icon" src="https://static.igem.org/mediawiki/2018/5/55/T--NAU-China--imodelillred.png" />
 +
    </a>
 +
    <a href="https://2018.igem.org/Team:NAU-CHINA/Auxiliary%20Understanding">
 +
        <img id="icon2" class="guide-icon" src="https://static.igem.org/mediawiki/2018/1/16/T--NAU-China--auxiliaryunderstandingpurple.png" />
 +
    </a>
  
 +
    <div class="main-content">
 +
        <div class="textblock">
 +
            <h1>Introduction</h1>
 +
            <p>We propose post-integration conditions, rationally simplify the complex situation, and split the whole process into a series of chemical reactions. Assuming that intervals between two reactions obey exponential distribution, we use the Gillespie algorithm<sup>[1]</sup> to calculate the changes in various substances in the system with reference to the Dynamics of the Brusselator <sup>[2]</sup>. The ideas and methods of this model have strong promotion prospects and adaptability. Our model demonstrates the necessity of using the recombinase(rec) system,the improvement effect of the system after adding the pathways expressing RDF-inhibitor and rec-inhibitor in turn, and the robustness of the model .The experimental team verified some assumptions and results of the model and selected materials according to the parameters of the model.</p>
 +
        </div>
  
 +
        <div class="textblock">
 +
            <h1>For judging handbook</h1>
  
 +
            <a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details">What kind of modeling is being done and what information it will provide?</a>
 +
            <p>We use the Gillespie algorithm to calculate the changes in various substances in the system</p>
  
 +
            <a href="#Assumptions">What assumptions were made and why? </a>
 +
            <p>One of our assumptions is that the length of the interval between consecutive reactions obeys an exponential distribution so that we can use the Gillespie algorithm [1] to calculate the changes in various substances in the system.</p>
  
 +
            <a href="#Parameters">What kind of data was used to build/assess the model</a>
 +
            <p> (a) Expression rate of each gene (production rate of related proteins, consumption rate of each protein.<br>
 +
                (b) The computing coefficient of each reaction’s rate.
 +
            </p>
 +
           
 +
            <a href="#Guide for Experiment">How the model results affected the project design and development?</a>
 +
            <p>Our model shows the improvement effect of the system after adding the pathways expressing RDF-inhibitor and rec-inhibitor in turn, so as to provide guidance to the experimental team.</p>
 +
           
 +
            <a href="#Guide for Experiment">1.  How impressive is the modeling?  </a>
 +
            <p>Our model has successfully done a proof of concept and played a key role in guiding experimental direction and path design.</p>
  
<div class="clear"></div>
+
            <a href="#Guide for Experiment">2.  Did the model help the team understand a part, device, or system? </a>
 +
            <p>Of course we did</p>
  
  
<div class="column full_size">
+
            <a href="https://2018.igem.org/Team:NAU-CHINA/Demonstrate">3.  Did the team use measurements of a part, device, or system to develop the model?</a>
<h1> Modeling</h1>
+
            <p>The experimental group verifies the feasibility of the path step by step and roughly determines the parameter dimensions of the model.
 +
            </p>
 +
            <a href="https://2018.igem.org/Team:NAU-CHINA/Auxiliary_Understanding#Part3 Our program code and instructions">4.  Does the modeling approach provide a good example for others?</a>
 +
            <p>The ideas and methods of this model have strong promotion prospects and adaptability. The codes are showed on our wiki , you can copy and run in you Matlab convenient.</p>
 +
            </p>
 +
        </div>
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
        <div class="textblock">
 +
            <h1>Symbol System </h1>
 +
            <table style='width: 75%; margin: 0px 14% 20px 14%;'>
 +
                <thead>
 +
                    <tr>
 +
                        <th align='center'>Symbol</th>
 +
                        <th align='center'>Meaning</th>
 +
                    </tr>
 +
                </thead>
 +
                <tbody>
 +
                    <tr>
 +
                        <td align='center'>Grec</td>
 +
                        <td align='center'>Gene of recombinase</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>rec</td>
 +
                        <td align='center'>Recombinase <sup>[3]</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>GsynNotch-TEV</td>
 +
                        <td align='center'>SynNotch-TEV gene</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>synNotch</td>
 +
                        <td align='center'>Active synNotch<sup>[4]</sup> on endomembrane system. In our model synNotch is synNotch-TEV</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>GTetR</td>
 +
                        <td align='center'>Gene of operon TetO’s repressor proteins<sup>[5]</sup></td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>TetR</td>
 +
                        <td align='center'>TetO operon’s repressor proteins</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>tetO</td>
 +
                        <td align='center'>Operon which can be repressed by TetR</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>TetOR</td>
 +
                        <td align='center'>Binary complex of operon TetO and repressor proteins TetR</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>TEV</td>
 +
                        <td align='center'>
 +
                            synNotch’s intracellular domain which is falling off by shearing,
 +
                            an enzyme can divide TetOR binary complex while separate TetR and
 +
                            degrade it<sup>[6]</sup>.
 +
                        </td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>RDF</td>
 +
                        <td align='center'>
 +
                            Reverse recombination factor, which can inverse DNA sequence
 +
                            between sites and make it back to the morphology not affected by rec<sup>[7]</sup>.
 +
                        </td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>Ts</td>
 +
                        <td align='center'>Target signal</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>Gx</td>
 +
                        <td align='center'>Gene of a protein x</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>∅</td>
 +
                        <td align='center'>Degraded material</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>U</td>
 +
                        <td align='center'>Unconsidered substance</td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
  
</div>
 
<div class="clear"></div>
 
  
<div class="column full_size">
 
<h3> Gold Medal Criterion #3</h3>
 
<p>
 
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.
 
<br><br>
 
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
 
</p>
 
  
<p>
+
        <div class="textblock">
Please see the <a href="https://2018.igem.org/Judging/Medals"> 2018
+
            <h1 id="Assumptions">Assumptions</h1>
Medals Page</a> for more information.  
+
            <p>Tips: Click the button named Aim.  </p>
</p>
+
            <p>1. Normal protein expression is a reaction which satisfies the post-integration conditions. All reactions which satisfy post-integration conditions can be viewed as one single chemical reaction. part1 . <a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details">Aim>>To simplify calculation</a></p>
</div>
+
            <p>2. Different reactions in cells occur independently. <a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details">Aim>>To determine when the next reaction occurs and which reaction occurs.</a></p>
 +
            <p>3. The length of the interval between consecutive reactions obeys an exponential distribution. <a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details">Aim>>To determine when the next reaction occurs and which reaction occurs. </a></p>
 +
            <p>4. The degradation of protein can be viewed as linear degradation.<a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details"> Aim>>To simplified calculation,this model is also compatible with other methods of calculating degradation for example Michaelis-Menten equation.</a></p>
 +
            <p>5. The repressor effect of the protein can be described by the Hill equation. <a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details">Aim>>To calculate the expression of rec. </a></p>
  
<div class="column two_thirds_size">
+
        </div>
<h3>Best Model Special Prize</h3>
+
  
<p>
+
        <div class="textblock">
To compete for the <a href="https://2018.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page and also fill out the description on the <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.  
+
            <h1 id="Parameters">Parameters</h1>
<br><br>
+
            <table style='width: 75%; margin: 0px 14% 20px 14%;'>
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
                <tbody>
</p>
+
                    <tr>
 +
                        <td align='center'>c21=5;</td>
 +
                        <td align='center'> % TetR Gene expression</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c22=0.001;</td>
 +
                        <td align='center'>% TetR degradation</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c23=200;</td>
 +
                        <td align='center'>% generate dipolymer</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c24=0.003;  </td>
 +
                        <td align='center'>  % TEV causes decomposition of dipolymer</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c25=0.000005; </td>
 +
                        <td align='center'> % self decomposition of dipolymer</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>NTetO=5;  </td>
 +
                        <td align='center'>% Hill coefficient</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>Swichpoint=2000;</td>
 +
                        <td align='center'>% parameter to the hill equation</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c31=8; </td>
 +
                        <td align='center'>% rec's Maximum gene expression rate</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c32=12; </td>
 +
                        <td align='center'>  % RDF-inhibitor's Maximum gene expression rate</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'> c33=0.01;    </td>
 +
                        <td align='center'> % rec degradation</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c34=0.01;    </td>
 +
                        <td align='center'> % rec-RDF-inhibitor degradation</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c35=2;</td>
 +
                        <td align='center'> % rec-inhibitor Gene expression(No rec-inhibitor can be set to 0)</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c36=0.1;  </td>
 +
                        <td align='center'> % rec-inhibitor in combination with rec</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c37=200;  </td>
 +
                        <td align='center'>  % The noise reduction reaction of rec</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'> c41=0.0000006; </td>
 +
                        <td align='center'> % rec reverse reaction</td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c51=7;    </td>
 +
                        <td align='center'> % Turn on GENE expression downstream </td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'> c52=0.01; </td>
 +
                        <td align='center'>  % RDF degradation </td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'>c53=200; </td>
 +
                        <td align='center'> % rec-inhibitor in combination with rec </td>
 +
                    </tr>
 +
                    <tr>
 +
                        <td align='center'> c61=0.0000005;  </td>
 +
                        <td align='center'> % rec-RDF reverse reaction</td>
 +
                    </tr>
 +
                </tbody>
 +
            </table>
 +
        </div>
  
</div>
 
  
 +
        <div class="textblock">
 +
            <h1 id="Guide for Experiment">Guide for Experiment</h1>
 +
            <p><a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details#Part4 Significance of the cell culture environment">1. By improving the cell culture environment, the noise in signal conversion process could be reduced by more than 10 percent. </a></p>
 +
            <p><a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details#Part5 Recombinase filtering and de-shocking">2. Our model shows the improvement effect of the system after adding the pathways expressing RDF-inhibitor and rec-inhibitor in turn, so as to provide guidance to the experimental team.</a></p>
 +
            <p><a href="https://2018.igem.org/Team:NAU-CHINA/Model_Details#Part6: Robustness of the model">3. We determined the design parameters to simulate the ideal results and verify the feasibility of the experimental design. </a></p>
  
<div class="column third_size">
+
        </div>
<div class="highlight decoration_A_full">
+
<h3> Inspiration </h3>
+
<p>
+
Here are a few examples from previous teams:
+
</p>
+
<ul>
+
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
+
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
+
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
+
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
+
</ul>
+
</div>
+
</div>
+
  
 +
 +
        <div class="textblock">
 +
            <h1>References</h1>
 +
            <p>[1] Gillespie, D. T. Exact Stochastic Simulation of couple chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).</p>
 +
            <p>[2] Ault, S. & Holmgreen, E. Dynamics of the Brusselator. Math 715 Proj. (Autumn 2002) 1–17 (2003). doi:10.1103/PhysRevE.61.2361</p>
 +
            <p> [3]    Stark WM. 2014. The serine recombinase. MicrobiolSpectrum2 (6):MDNA3-0046-2014. </p>
 +
            <p>[4] Morsut, L. et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 164, 780–791 (2016).</p>
 +
            <p>[5] Ramos, J. L. et al. The TetR Family of Transcriptional Repressors The TetR Family of Transcriptional Repressors. Microbiol. Mol. Biol. Rev. 69, 326–356 (2005).</p>
 +
            <p>[6] Phan, J. et al. Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 277, 50564–50572 (2002).</p>
 +
            <p>[7] Olorunniji, F. J. et al. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res. 45, 8635–8645 (2017).</p>
 +
 +
        </div>
 +
    </div>
 +
    </div>
 +
</body>
 
</html>
 
</html>
 +
{{NAU-CHINA/footer}}

Latest revision as of 03:05, 18 October 2018

Template:2018_NAU-CHINA

header
Engagement

Model

Overview

Introduction

We propose post-integration conditions, rationally simplify the complex situation, and split the whole process into a series of chemical reactions. Assuming that intervals between two reactions obey exponential distribution, we use the Gillespie algorithm[1] to calculate the changes in various substances in the system with reference to the Dynamics of the Brusselator [2]. The ideas and methods of this model have strong promotion prospects and adaptability. Our model demonstrates the necessity of using the recombinase(rec) system,the improvement effect of the system after adding the pathways expressing RDF-inhibitor and rec-inhibitor in turn, and the robustness of the model .The experimental team verified some assumptions and results of the model and selected materials according to the parameters of the model.

For judging handbook

What kind of modeling is being done and what information it will provide?

We use the Gillespie algorithm to calculate the changes in various substances in the system

What assumptions were made and why?

One of our assumptions is that the length of the interval between consecutive reactions obeys an exponential distribution so that we can use the Gillespie algorithm [1] to calculate the changes in various substances in the system.

What kind of data was used to build/assess the model

(a) Expression rate of each gene (production rate of related proteins, consumption rate of each protein.
(b) The computing coefficient of each reaction’s rate.

How the model results affected the project design and development?

Our model shows the improvement effect of the system after adding the pathways expressing RDF-inhibitor and rec-inhibitor in turn, so as to provide guidance to the experimental team.

1. How impressive is the modeling?

Our model has successfully done a proof of concept and played a key role in guiding experimental direction and path design.

2. Did the model help the team understand a part, device, or system?

Of course we did

3. Did the team use measurements of a part, device, or system to develop the model?

The experimental group verifies the feasibility of the path step by step and roughly determines the parameter dimensions of the model.

4. Does the modeling approach provide a good example for others?

The ideas and methods of this model have strong promotion prospects and adaptability. The codes are showed on our wiki , you can copy and run in you Matlab convenient.

Symbol System

Symbol Meaning
Grec Gene of recombinase
rec Recombinase [3]
GsynNotch-TEV SynNotch-TEV gene
synNotch Active synNotch[4] on endomembrane system. In our model synNotch is synNotch-TEV
GTetR Gene of operon TetO’s repressor proteins[5]
TetR TetO operon’s repressor proteins
tetO Operon which can be repressed by TetR
TetOR Binary complex of operon TetO and repressor proteins TetR
TEV synNotch’s intracellular domain which is falling off by shearing, an enzyme can divide TetOR binary complex while separate TetR and degrade it[6].
RDF Reverse recombination factor, which can inverse DNA sequence between sites and make it back to the morphology not affected by rec[7].
Ts Target signal
Gx Gene of a protein x
Degraded material
U Unconsidered substance

Assumptions

Tips: Click the button named Aim.

1. Normal protein expression is a reaction which satisfies the post-integration conditions. All reactions which satisfy post-integration conditions can be viewed as one single chemical reaction. part1 . Aim>>To simplify calculation

2. Different reactions in cells occur independently. Aim>>To determine when the next reaction occurs and which reaction occurs.

3. The length of the interval between consecutive reactions obeys an exponential distribution. Aim>>To determine when the next reaction occurs and which reaction occurs.

4. The degradation of protein can be viewed as linear degradation. Aim>>To simplified calculation,this model is also compatible with other methods of calculating degradation for example Michaelis-Menten equation.

5. The repressor effect of the protein can be described by the Hill equation. Aim>>To calculate the expression of rec.

Parameters

c21=5; % TetR Gene expression
c22=0.001; % TetR degradation
c23=200; % generate dipolymer
c24=0.003; % TEV causes decomposition of dipolymer
c25=0.000005; % self decomposition of dipolymer
NTetO=5; % Hill coefficient
Swichpoint=2000; % parameter to the hill equation
c31=8; % rec's Maximum gene expression rate
c32=12; % RDF-inhibitor's Maximum gene expression rate
c33=0.01; % rec degradation
c34=0.01; % rec-RDF-inhibitor degradation
c35=2; % rec-inhibitor Gene expression(No rec-inhibitor can be set to 0)
c36=0.1; % rec-inhibitor in combination with rec
c37=200; % The noise reduction reaction of rec
c41=0.0000006; % rec reverse reaction
c51=7; % Turn on GENE expression downstream
c52=0.01; % RDF degradation
c53=200; % rec-inhibitor in combination with rec
c61=0.0000005; % rec-RDF reverse reaction

References

[1] Gillespie, D. T. Exact Stochastic Simulation of couple chemical reactions. J. Phys. Chem. 81, 2340–2361 (1977).

[2] Ault, S. & Holmgreen, E. Dynamics of the Brusselator. Math 715 Proj. (Autumn 2002) 1–17 (2003). doi:10.1103/PhysRevE.61.2361

[3] Stark WM. 2014. The serine recombinase. MicrobiolSpectrum2 (6):MDNA3-0046-2014.

[4] Morsut, L. et al. Engineering Customized Cell Sensing and Response Behaviors Using Synthetic Notch Receptors. Cell 164, 780–791 (2016).

[5] Ramos, J. L. et al. The TetR Family of Transcriptional Repressors The TetR Family of Transcriptional Repressors. Microbiol. Mol. Biol. Rev. 69, 326–356 (2005).

[6] Phan, J. et al. Structural basis for the substrate specificity of tobacco etch virus protease. J. Biol. Chem. 277, 50564–50572 (2002).

[7] Olorunniji, F. J. et al. Control of serine integrase recombination directionality by fusion with the directionality factor. Nucleic Acids Res. 45, 8635–8645 (2017).

footer