Difference between revisions of "Team:XMU-China/Improve"

 
(25 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!DOCTYPE html>
 
 
<html lang="en">
 
<html lang="en">
  
Line 13: Line 12:
 
     <meta name="keywords" content="" />
 
     <meta name="keywords" content="" />
 
     <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
 
     <link rel="shortcut icon" href="favicon.ico" type="image/x-icon" />
     <meta name="apple-touch-fullscreen" content="yes" /><!-- 是否启用 WebApp 全屏模式,删除苹果默认的工具栏和菜单栏 -->
+
     <meta name="apple-touch-fullscreen" content="yes" /><!-- 是否启用 WebApp 全屏模式,删除苹果默认的工具栏和菜单栏 -->
     <meta name="apple-mobile-web-app-status-bar-style" content="black" /><!-- 设置苹果工具栏颜色:默认值为 default,可以定为 black和 black-translucent-->
+
     <meta name="apple-mobile-web-app-status-bar-style" content="black" /><!-- 设置苹果工具栏颜色:默认值为 default,可以定为 black和 black-translucent-->
 
     <meta http-equiv="Cache-Control" content="no-siteapp" /><!-- 不让百度转码 -->
 
     <meta http-equiv="Cache-Control" content="no-siteapp" /><!-- 不让百度转码 -->
     <meta name="HandheldFriendly" content="true"><!-- 针对手持设备优化,主要是针对一些老的不识别viewport的浏览器,比如黑莓 -->
+
     <meta name="HandheldFriendly" content="true"><!-- 针对手持设备优化,主要是针对一些老的不识别viewport的浏览器,比如黑莓 -->
 
     <meta name="MobileOptimized" content="320"><!-- 微软的老式浏览器 -->
 
     <meta name="MobileOptimized" content="320"><!-- 微软的老式浏览器 -->
 
     <meta name="screen-orientation" content="portrait"><!-- uc强制竖屏 -->
 
     <meta name="screen-orientation" content="portrait"><!-- uc强制竖屏 -->
Line 23: Line 22:
 
     <meta name="x5-page-mode" content="app"><!-- QQ应用模式 -->
 
     <meta name="x5-page-mode" content="app"><!-- QQ应用模式 -->
 
     <meta name="msapplication-tap-highlight" content="no"><!-- windows phone 点击无高光 -->
 
     <meta name="msapplication-tap-highlight" content="no"><!-- windows phone 点击无高光 -->
     <title>Team:XMU-China/Description - 2018.igem.org</title>
+
     <title>Team:XMU-China/Improve - 2018.igem.org</title>
     <link rel="stylesheet" href="css/desciption.css">
+
     <link rel="stylesheet" href="css/description.css">
 +
    <link rel="stylesheet" href="css/font.css">
 
     <link href="http://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
 
     <link href="http://cdn.bootcss.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/cover?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/cover?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/footer?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/footer?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav?action=raw&ctype=text/css">
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav_mobile?action=raw&ctype=text/css">
+
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/description?action=raw&ctype=text/css">
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/desciption?action=raw&ctype=text/css">
+
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/font?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/font?action=raw&ctype=text/css">
 +
    <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/nav_mobile?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/material-scrolltop?action=raw&ctype=text/css">
 
     <link rel="stylesheet" href="https://2018.igem.org/Team:XMU-China/css/material-scrolltop?action=raw&ctype=text/css">
 
</head>
 
</head>
  
 
<body>
 
<body>
 +
    <header></header>
 
     <div id="container">
 
     <div id="container">
 
         <header>
 
         <header>
Line 46: Line 47:
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Description">Description</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Description">Description</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li>
                                <li><a href="https://2018.igem.org/Team:XMU-China/Demonstrate">Demonstrate</a></li>
 
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Demonstrate">Demonstrate</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li>
 
                             </ul>
 
                             </ul>
Line 57: Line 58:
 
                             <ul>
 
                             <ul>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Microfluidic_Chips">Microfluidic Chips</a></li>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Fluorescence_Detection">Fluorescence Detection</a></li>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Straberry_Pi">Straberry Pi</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Raspberry_Pi">Raspberry Pi</a></li>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Application">Application</a></li>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Software">Software</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Product Design</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 67: Line 69:
 
                             <a href="#">Model</a>
 
                             <a href="#">Model</a>
 
                             <ul>
 
                             <ul>
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Model">Overview</a></li>
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Model#Summary">Summary</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Model#Thermodynamic_model">Thermodynamic Model</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Model#Fluid_dynamics_model">Fluid dynamics Model</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Model#Molecular_docking_model">Molecular Docking Model</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Model#The_dynamic_model">Derivation of Rate Equation</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
 
                         <li class="Human_Practice">
 
                         <li class="Human_Practice">
                             <a href="#">Human Practice</a>
+
                             <a href="#">Social Works</a>
 
                             <ul>
 
                             <ul>
                                 <li><a href="https://2018.igem.org/Te
+
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Human Practice</a></li>
                                am:XMU-China/Human_Practices">Overview</a></li>
+
                                <li><a href="https://2018.igem.org/Team:XMU-China/HP/Silver">Silver</a></li>
+
                                <li><a href="https://2018.igem.org/Team:XMU-China/HP/Gold_Integrated">Gold</a></li>
+
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li>
Line 96: Line 99:
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/Engineering">Engineering</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 104: Line 108:
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 
                                 <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 +
                                <li><a href="https://2018.igem.org/Team:XMU-China/After_iGEM">After iGEM</a></li>
 
                             </ul>
 
                             </ul>
 
                         </li>
 
                         </li>
Line 113: Line 118:
 
     </div>
 
     </div>
 
     <script src="js/jquery-1.11.0.min.js"></script>
 
     <script src="js/jquery-1.11.0.min.js"></script>
    <!-- <script src="js/hc-mobile-nav.js"></script> -->
 
 
     <script src="https://2018.igem.org/Team:XMU-China/js/hc-mobile-nav?action=raw&ctype=text/javascript"></script>
 
     <script src="https://2018.igem.org/Team:XMU-China/js/hc-mobile-nav?action=raw&ctype=text/javascript"></script>
 
     <div class="header">
 
     <div class="header">
Line 128: Line 132:
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/After_iGEM">After iGEM</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
 
                 <div id="Notebook">
 
                 <div id="Notebook">
                     <div>
+
                     <div class="nav-word">Notebook</div>
                        <div class="nav-word">Notebook</a></div>
+
                    </div>
+
 
                     <ul>
 
                     <ul>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Engineering">Engineering</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 149: Line 153:
 
                 </div>
 
                 </div>
 
                 <div id="Human_Practice">
 
                 <div id="Human_Practice">
                     <div class="nav-word">Human Practice</div>
+
                     <div class="nav-word">Social Works</div>
 
                     <ul>
 
                     <ul>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Overview</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Human Practice</a></li>
                        <li><a href="https://2018.igem.org/Team:XMU-China/HP/Silver">Silver</a></li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/HP/Gold_Integrated">Gold</a></li>
+
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li>
Line 162: Line 164:
 
                     <div class="nav-word">Model</div>
 
                     <div class="nav-word">Model</div>
 
                     <ul>
 
                     <ul>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Model">Overview</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Model">Summary</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Model#Thermodynamic_model">Thermodynamic Model</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Model#Fluid_dynamics_model">Fluid dynamics Model</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Model#Molecular_docking_model">Molecular Docking Model</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Model#The_dynamic_model">Derivation of Rate Equation</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 169: Line 175:
 
                     <ul>
 
                     <ul>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Microfluidic_Chips">Microfluidic Chips</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Fluorescence_Detection">Fluorescence Detection</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Straberry_Pi">Straberry Pi</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Raspberry_Pi">Raspberry Pi</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Hardware#Application">Application</a></li>
                         <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li>
+
                         <li><a href="https://2018.igem.org/Team:XMU-China/Software">Software</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Product Design</a></li>
 
                     </ul>
 
                     </ul>
 
                 </div>
 
                 </div>
Line 181: Line 188:
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Description">Description</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Description">Description</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li>
                        <li><a href="https://2018.igem.org/Team:XMU-China/Demonstrate">Demonstrate</a></li>
 
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li>
 +
                        <li><a href="https://2018.igem.org/Team:XMU-China/Demonstrate">Demonstrate</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li>
 
                         <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li>
 
                     </ul>
 
                     </ul>
Line 195: Line 202:
 
         <div class="clear"></div>
 
         <div class="clear"></div>
 
         <div class="description_banner">
 
         <div class="description_banner">
             <div class="word">Description</div>
+
             <div class="word">Improve</div>
 
         </div>
 
         </div>
         <nav class="Quick-navigation">
+
          
            <div class="Quick-navigation_word">
+
                <img  src="https://static.igem.org/mediawiki/2018/f/f5/T--XMU-China--right0.png">
+
                <a href="#ABCDsystem" class="Quick-navigation-item">
+
                    <img id="turn_img" src="https://static.igem.org/mediawiki/2018/d/db/T--XMU-China--right1.png">
+
                    <a href="#ABCDsystem"id="Quick_A">ABCDsystem</a></a>
+
                <a href="#OMVs" class="Quick-navigation-item" >
+
                    <img id="turn_img" src="https://static.igem.org/mediawiki/2018/c/cd/T--XMU-China--right2.png">
+
                    <a href="#OMVs" id="Quick_B">OMVs</a></a>
+
                <a href="#Supporting" class="Quick-navigation-item">
+
                    <img id="turn_img" src="https://static.igem.org/mediawiki/2018/1/1c/T--XMU-China--right3.png">
+
                    <a href="#Supporting" id="Quick_C">Supporting</a></a>
+
            </div>
+
        </nav>
+
 
         <div class="main">
 
         <div class="main">
             <section id="ABCDsystem" class="js-scroll-step">
+
             <section id="KaiABC" class="js-scroll-step">
                <div class="headline">
+
                    ABCDsystem
+
                </div>
+
 
                 <h1>Background</h1>
 
                 <h1>Background</h1>
                 <p>Protein plays a significant role in performing physiological functions<sup>[1]</sup>. However, in diseased cells, protein carrying out a certain function may indicate the proceedings of disease. Such protein could be sorted to biomarkers, which have been regarded as the targets of disease detection and treatment in recent years.<sup>[2]-[4]</sup> Therefore, detecting those biomarkers of protein-type becomes more and more critical to biological and medical fields.
+
                 <p>Rhythmic oscillator remains a hot topic in synthetic biology for a long time. The periodic expression of protein can be realized by the rhythm oscillator, so as to realize the regular expression of non-inductor and the biological timer. The most common oscillator is the Repressilator, a circuit of three proteins encoded by three genes that suppress each other. However, there are some complex problems and many unknown factors in Repressilator. Besides, the stability of the constructed cycle time period is weak, which can cause problems for its further design and engineering utilization. <br>
                </p>
+
                <p>Twelve years ago, Harvard_2006 had tried to rebuild rhythmic oscillator of <i>Cyanobacteria</i> PCC7942 in <i>E. coli</i>. But the transcription factors that link the Kai clock to gene regulation in <i>Cyanobacteria</i> were not well understood. Therefore they tested their clock in <i>E. coli</i> by measuring the amounts of phosphorylated and unphosphorylated KaiC via western blot. More details can be viewed in <a href="https://2006.igem.org/wiki/index.php/Harvard_2006">the link</a>.
                <p>There are two main detecting approaches to detect a particular protein in a complex sample. One is direct determination of the content after purification, and the other is binding assays which include a target recognition probe and a signal transducer. The former approach includes gel filtration chromatography, ion exchange chromatography, nickel column and more. While on the down side, these methods involve high costs, strict equipment requirements and other drawbacks, which are not suitable for promotion and application. The enzyme-linked immunosorbent assay (ELISA) is a typical representative of the latter approach, nevertheless, such assays using antibodies as affinity ligands have cross-reactivity of antibodies compromising the specificity to the target of interest.<sup>[5]</sup> What’s worse, the premise of using ELISA is to find the corresponding antibodies, but the fact is that not all proteins can find their specific antibody protein. That is to say, the use of ELISA is also limited.
+
                    <br>
                </p>
+
                 <p>However, some proteins related with Kai have been studied for years, such as SasA, RpaA and CikA. We XMU-China aimed to improve what Harvard did twelve years ago and push the utilization of circadian to a new level. <br>
                <p>In terms of binding assays, using aptamers as affinity ligands to recognize specific proteins are better than those using antibodies. Aptamers are short, synthetic single stranded oligonucleotides (DNA or RNA) that can bind to target molecules with high affinity and specificity.<sup>[6]-[9]</sup> They are commonly selected from random sequence libraries, using the systematic evolution of ligands by exponential enrichment (SELEX) techniques.<sup>[10]</sup> Advantages of aptamers over antibodies include longer shelflife, improved thermal stability and ease of modification and conjugation.<sup>[11]</sup>
+
                </p>
+
                 <p>An interesting binding assay is to use aptamers as the target recognition probes and CRISPR-Cas12a (Cpf1) as the signal amplifier, which is called Aptamer Based Cell-free Detection system(ABCD system, Figure 1). We developed this system to detect those biomarkers of protein-type for the purpose of disease detection or staging.
+
 
                 </p>
 
                 </p>
 
                 <p class="F1">
 
                 <p class="F1">
                     <img src="https://static.igem.org/mediawiki/2018/e/e2/T--XMU-China--ABCD_system.png">
+
                     <img src="https://static.igem.org/mediawiki/2018/e/e1/T--XMU-China--kai-improve-1.png"><p class="Figure_word"><strong>Figure 1.</strong> The schematic illustration of KaiABC system.</p>
                    <p class="Figure_word">Figure 1. <strong>A</strong>ptamer <strong>B</strong>ased <strong>C</strong>ell-free <strong>D</strong>etection system.</p>
+
 
                 </p>
 
                 </p>
                <h1>Abstract</h1>
+
                    <h1>Abstract</h1>
                <p>The core of the ABCD system is the specific binding of the aptamer and its target protein. We immobilize the aptamer-“complementary strand” complex on a solid phase, using a “competitive” approach to free the “complementary strand”; then the “complementary strand” was detected using the trans-cleavage property of the Cpf1 protein, which allows the fluorescence recovery of the static quenched complex whose fluorophore and quencher are linked by a ssDNA. In summary, we initially transform the protein signal to the acid signal, then transform the nucleic acid signal to the fluorescence signal. We use aptamer SYL3C<sup>[12]</sup> against EpCAM, an epithelial cell adhesion molecule that is highly expressed on the surface of adenocarcinoma cells, to test the feasibility of our system.</p>
+
                    <p>Having considered the situation mentioned above, we turn our attention to the circadian rhythm system within the prokaryotic system. Finally, we choosed the Kai protein system as our project. <br>
                <h1 class="reference">Reference</h1>
+
                     <p>KaiABC system is the circadian system in <i>Cyanobacteria</i>. Oscillations are controlled by phosphorylation of the KaiC protein, which is modulated by the KaiA and KaiiB proteins. In 2015, Professor Silver of Harvard University first transplanted the circadian oscillators, KaiABC system and associated protein into noncircadian bacterium <i>Escherichia. coli</i> and successfully constructed a circadian rhythm. Realizing the potential application prosects of KaiABC system, we modified their design: we added RpaA, CikA and SasA into the genetic circuits. We aim to use such three proteins to connect the KaiC's oscillators with an output signal, which is supposed to be a 24-hour rhythmic fluorescence. <br>
                <p>
+
                     </p>
                    [1] Janet Iwasa, Wallace Marshall. Karp's Cell and Molecular Biology: Concepts and Experiments (8th ed.). <i>Wiley: Hoboken, NJ.</i> <strong>2016</strong>, 48-49.
+
                     <p class="F2">
                    <br>[2] J. K. Aronson. Biomarkers and surrogate endpoints. <i>British Journal of Clinical Pharmacology.</i> <strong>2005</strong>, 59, 491-494.
+
                        <img src="https://static.igem.org/mediawiki/2018/e/e1/T--XMU-China--kai-improve-2.png">
                     <br>[3] Kyle Strimbu, Jorge A. Tavel. What are biomarkers? <i>Current Opinion in HIV and AIDS.</i> <strong>2010</strong>, 5, 463–466.
+
                        <p class="Figure_word"><strong>Figure 2.</strong> Timekeeping, entrainment and output signaling functions are highlighted within the oscillatory cycle of the cyanobacterial clock (imitate Swan J A, <i>et al</i> <sup>[1]</sup>).</p>
                    <br>[4] Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. <i>Clin. Pharmacol. Ther.</i> <strong>2001</strong>, 69, 89-95.
+
                     </p>
                    <br>[5] Hongquan Zhang, Feng Li, Brittany Dever, Xing-Fang Li, X. Chris Le. DNA-Mediated Homogeneous Binding Assays for Nucleic Acids and Proteins. <i>Chem. Rev.</i> <strong>2013</strong>, 113, 2812-2841.
+
                     <p>Powered by ATPase activity of its CI domain, KaiC cycles through a series of phosphorylation states, which are interdependent on its quaternary structure. KaiA is bound to the CII domain of KaiC during the day and stimulates phosphorylation. This process is sensitive to the ATP/ADP ratio, which peaks at midday, providing an entrainment cue. At night, levels of oxidized quinones will rise in the cell, which entrains the clock as well. Around this time, KaiC reaches the pS/pT state, and SasA binds to the CI domain to activate RpaA. CI-bounding SasA is eventually competed away by KaiB. Binding of KaiB is slowed by its intrinsically unfavorable equilibrium that sequesters it in inactive states. Accumulation of KaiB in its KaiC-bound form recruits and inactivates KaiA. CikA also interacts with the fold-switched form of KaiB, which dephosphorylates RpaA and then inactivate it. <sup>[1]</sup></p>
                    <br>[6] Larry Gold, Barry Polisky, Olke Uhlenbeck, Michael Yarus. Diversity of Oligonucleotide Functions. <i>Annu. Rev. Biochem.</i> <strong>1995</strong>, 64, 763-797.
+
                     <h1>Design</h1>
                    <br>[7] Camille L.A. Hamula, Jeffrey W. Guthrie, Hongquan Zhang, Xing-Fang Li, X. Chris Le. Selection and analytical applications of aptamers. <i>Trends Anal. Chem.</i> <strong>2006</strong>, 25, 681-691.
+
                     <p class="F2">
                    <br>[8] Renee K. Mosing, Shaun D. Mendonsa, Michael T. Bowser. Capillary Electrophoresis-SELEX Selection of Aptamers with Affinity for HIV-1 Reverse Transcriptase. <i>Anal. Chem.</i> <strong>2005</strong>, 77, 6107-6112.
+
                        <img src="https://static.igem.org/mediawiki/2018/4/4e/T--XMU-China--kai-improve-3.png"><p class="Figure_word"><strong>Figure 3.</strong> The gene circle of the Repressilator, which includes three proteins encoded by three genes that rebuild Kai circadian oscillator.</p>
                    <br>[9] Maxim Berezovski, Andrei Drabovich, Svetlana M. Krylova, Michael Musheev, Victor Okhonin, Alexander Petrov, Sergey N. Krylov. Nonequilibrium Capillary Electrophoresis of Equilibrium Mixtures: A Universal Tool for Development of Aptamers. <i>J. Am. Chem. Soc.</i> <strong>2005</strong>, 127, 3165-3171.
+
                    <br>[10] M Darmostuk, S Rimpelova, H Gbelcova, T Ruml. Current approaches in SELEX: an update to aptamer selection technology. <i>Biotechnology Advances.</i> <strong>2015</strong>, 33, 1141-1161.
+
                    <br>[11] Sumedha D. Jayasena. Aptamers: an emerging class of molecules that rival antibodies in diagnostics. <i>Clin. Chem.</i> <strong>1999</strong>, 45, 1628-1650.
+
                    <br>[12] Yanling Song, Zhi Zhu, Yuan An, Weiting Zhang, Huimin Zhang, Dan Liu, Chundong Yu, Wei Duan, Chaoyong James Yang. Selection of DNA Aptamers against Epithelial Cell Adhesion Molecule for Cancer Cell Imaging and Circulating Tumor Cell Capture. <i>Anal Chem.</i> <strong>2013</strong>, 85, 4141-4149.
+
                </p>
+
            </section>
+
            <section id="OMVs" class="js-scroll-step">
+
                <div class="headline">
+
                    OMVs
+
                </div>
+
                <h1>Background</h1>
+
                <p>Outer-membrane vesicles (OMVs) are lipid vesicles commonly produced by Gram-negative bacteria, which are filled with periplasmic content and are 20-250 nm in diameters (Figure 1). The production of OMVs allows bacteria to interact with their environment, and OMVs have been found to mediate diverse functions, including promoting pathogenesis, and enabling bacterial delivery of nucleic acids and proteins. A recent paper by Kojima R et al. 2018, demonstrated an EXOtic device that can produce exosomes with specific nucleic acids cargo (Figure 2). We were impressed by the amazing OMVs and EXOtic device and came up with an idea to design a cell-free system to enable specific siRNA to be encapsulated into OMVs for cancer treatment.
+
                </p>
+
                <p class="F2">
+
                    <img src="https://static.igem.org/mediawiki/2018/4/43/T--XMU-China--OMVs11.png">
+
                    <p class="Figure_word">Figure 2. The cell envelope of Gram-negative bacteria consists of two membranes, the outer membrane and the cytoplasmic membrane. Envelope stability comes from various crosslinks including the non-covalent interactions between the PG and the porin outer-membrane protein A (OmpA).</p>
+
                </p>
+
                <p class="F2">
+
                    <img src="https://static.igem.org/mediawiki/2018/c/c0/T--XMU-China--OMVs12.png">
+
                    <p class="Figure_word">Figure 3. Schematic illustration of the EXOtic devices. Exosomes are nanoscale extracellular lipid bilayer vesicles of endocytic origin, and they are secreted by nearly all cell types in physiological and pathological conditions. Exosomes containing the RNA packaging device (CD63-L7Ae) and mRNA (e.g., nluc-C/Dbox) can efficiently deliver specific nucleic acids.</p>
+
                </p>
+
                <h1>Abstract</h1>
+
                <p>Not only eukaryotes but also prokaryotes can produce nanoscale bubbles to fulfill diverse functions, such as cellular communication, surface modifications and the elimination of undesired components. Additionally, because of this functional versatility, OMVs have been explored as a platform for bioengineering applications. This year, we XMU-China decide to utilize OMVs as a cell-free platform to deliver our nucleic acids agents to facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer.</p>
+
                <p class="F3">
+
                     <img src="https://static.igem.org/mediawiki/2018/9/9d/T--XMU-China--OMVs13.png">
+
                     <p class="Figure_word">Figure 4. We utilize a split protein SpyTag/SpyCatcher (ST/SC) bioconjugation system to create a synthetic linkage between protein OmpA and archaeal ribosomal protein L7Ae. We fuse SpyTag with OmpA at its C-termini and N-termini respectively.</p>
+
                </p>
+
                <p class="F3">
+
                    <img src="https://static.igem.org/mediawiki/2018/d/da/T--XMU-China--OMVs14.png">
+
                    <p class="Figure_word">Figure 5. After the induction of IPTG and Arabinose, we can get L7Ae-SpyCatcher and siRNA-C/Dbox. Archaeal ribosomal protein L7Ae owns the ability to bind with C/Dbox RNA structure.</p>
+
                </p>
+
                <p class="F4">
+
                    <img src="https://static.igem.org/mediawiki/2018/9/97/T--XMU-China--OMVs15.png">
+
                    <p class="Figure_word">Figure 6. With the interaction between SpyTag and SpyCatcher, and the ability of L7Ae to be bind with C/Dbox, we can produce customizable and cell-free OMVs containing specific siRNA to traget for oncogenic gene.</p>
+
                </p>
+
                <h1 class="reference">Reference</h1>
+
                <p>
+
                    [1] Kojima R, Bojar D, Rizzi G, et al. Designer exosomes produced by implanted cells intracerebrally deliver therapeutic cargo for Parkinson’s disease treatment[J]. <i>Nature Communications.</i> <strong>2018</strong>, 9(1):1305. <br>
+
                    [2] Alves N J, Turner K B, Medintz I L, et al. Protecting enzymatic function through directed packaging into bacterial outer membrane vesicles: [J]. <i>Scientific Reports</i>, <strong>2016</strong>, 6:24866. <br>
+
                    [3] Schwechheimer C, Kuehn M J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. [J]. <i>Nature Reviews Microbiology</i>, <strong>2015</strong>, 13(10):605-19. <br>
+
                    [4] Vanaja S K, Russo A J, Behl B, et al. Bacterial Outer Membrane Vesicles Mediate Cytosolic Localization of LPS and Caspase-11 Activation. [J]. <i>Cell</i>, <strong>2016</strong>, 165(5):1106-1119. <br>
+
                    [5] Kamerkar S, Lebleu V S, Sugimoto H, et al. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer[J]. <i>Nature</i>, <strong>2017</strong>, 546(7659):498-503. <br>
+
                     [6] https://en.wikipedia.org/wiki/Pancreatic_cancer<br>
+
                </p>
+
            </section>
+
            <section id="Supporting" class="js-scroll-step">
+
                <div class="headline">
+
                     Supporting
+
                </div>
+
                <h1>Background</h1>
+
                <p>Tardigrades are able to tolerate almost complete dehydration by reversibly switching to an ametabolic state. This ability is called anhydrobiosis.<sup>[1]</sup>Tardigrade-specific intrinsically disordered proteins (TDPs) are essential for desiccation olerance.<sup>[2]</sup>2012, Takekazu Kunieda and his team identified five abundant heat-soluble proteins in the tardigrades, which can prevent protein-aggregation in dehydrated conditions in other anhydrobiotic organisms.<sup>[1]</sup>
+
                </p>
+
                <p class="F4">
+
                    <img src="https://static.igem.org/mediawiki/2018/2/2d/T--XMU-China--TDP1.png">
+
                    <p class="Figure_word">Figure 7. Stage Photo of Tardigrades in Ant-Man 2.</p>
+
                </p>
+
                <p>In 2017, Thomas C. Boothby and his team segregated three TDP proteins in the water bears and explored their mechanism of action<sup>[3]</sup>. This is a schematic diagram of the mechanism they have done so far. At the same time, one of the 2017 iGEM teams <a href="https://2017.igem.org/Team:TUDelft/Design"><span class="click_here">TUDelft</span></a>, attempted to preserve the Cas13a protein using the TDP proteins, and they also tried to preserve the bacteria with the TDP proteins and obtained amazing outcome.
+
                     In our project, we are going to use TDPs to help preserve the protein Cas12a and OMVs.
+
                </p>
+
                <h1>Abstract</h1>
+
                <p>We have carried out research on TDP proteins this year. On the one hand, we plan to preserve the Cas12a required for protein detection and OMVs required for treatment with TDPs. On the other hand, as the wiki says, TDP is a new biological activity protector with great potential. So we are going to use TDP proteins to simplify existing methods of preserving proteins and bacteria.
+
                     There are two novel protein families with distinct subcellular localizations named Cytoplasmic Abundant Heat Soluble (CAHS) and Secretory Abundant Heat Soluble (SAHS) protein families, according to their localization. In our project, SAHS1 was used to preserve the proteins and CAHS1 was used for the preservation of the bacteria.
+
                </p>
+
                <p class="F4">
+
                    <img src="https://static.igem.org/mediawiki/2018/a/aa/T--XMU-China--TDP2.png">
+
                    <p class="Figure_word">Figure 8. The Expression of TDPs When The Tardigrades Suffer Form Fast Drying and Slow Drying.(Thomas C. Boothby et al. 2017).</p>
+
                </p>
+
                <h1>Reference</h1>
+
                <p class="reference">
+
                    [1]. Yamaguchi A. Two Novel Heat-Soluble Protein Families Abundantly Expressed in an Anhydrobiotic Tardigrade. <i>PLoS ONE</i>, <strong>2012</strong>;7(8):e44209. <br>
+
[2]. Boothby TC. Tardigrades Use Intrinsically Disordered Proteins to Survive Desiccation. <i>Mol Cell</i>. <strong>2017</strong> Mar16;65(6):975-984.e5.
+
  
                </p>
+
                    </p>
 +
                        <p>Three key proteins, KaiA, KaiB, and KaiC, comprise the central circadian oscillator . KaiC undergoes ordered autophosphorylation and autodephosphorylation events that signal the time of the day (oscillator timekeeping) for the control of genetic expression patterns. Most important to the circadian control of cellular responses is the ordered phosphorylation of two adjoining amino acid residues (Thr432 and Ser431) in the CII domain of KaiC; they become sequentially phosphorylated and then dephosphorylated during a cycle about 24h. As there are two phosphorylation sites, there are four possible states in every KaiC monomer (ST, SpT, pSpT, and pST. pS and pT represent phosphorylated Ser431 and phosphorylated Thr432, respectively). KaiA facilitates the phosphorylation of Thr432 and then Ser431. Subsequently, KaiB antagonizes KaiA activity, and then KaiC undergoes autodephosphorylation of Thr432 and then Ser431. The association/dissociation of all three Kai proteins controls the period, phase, and amplitude of the circadian oscillator. <sup>[2]</sup></p>
 +
                        <p class="F2"><img src="https://static.igem.org/mediawiki/2018/e/ec/T--XMU-China--kai-improve-4.png"></p><p class="Figure_word"><strong>Figure 4.</strong> The gene circle of the transcription factors that link with the Kai clock.</p>
 +
                            <p>For transcription, we selected SasA, CikA, and RpaA proteins, as well as pKaiBC, which can respond to the oscillator. Among them, self-phosphorylated KaiC can phosphorylate SasA, which will then transfer phosphate groups to RpaA, thereby activating RpaA as a transcription factor and inducing pKaiBC to transcribe downstream related proteins. But phosphorylated RpaA constantly activates transcription, so we added CikA as a protein to dephosphorylate the RpaA. In this way, the 24-hour oscillations of KaiC phosphorylation are transformed into periodic oscillations at the transcriptional level.</p>
 +
                            <p class="F2"><img src="https://static.igem.org/mediawiki/2018/6/67/T--XMU-China--kai-improve-5.png"><p class="Figure_word"><strong>Figure 5.</strong> The gene circle of pKaiBC and reporter gene, which can respond to the oscillator.</p>
 +
                                <p>Finally, we choosed sfYFP BBa_K864100 to present the rhythm, which is supposed to be a 24-hour rhythmic fluorescence. And Bioluminescence assays were performed as described. <sup>[3]</sup></p>
 +
                                <h1>Advantage</h1>
 +
                                <p class="reference">1.
 +
                                Compared with the traditional repressilators and time-delay pacemakers, the Kai protein system has a longer period, and its stability is optimized due to its natural origin. Furthermore, Kai system can restore the rhythm in the natural state to the maximum extent, which is of more application value. <br>
 +
                                2.
 +
                                Through the mutation of KaiC phosphorylation site, the circadian cycle length can be controlled. By regulating the nutrition of the culture and the intensity of RBS, we can adjust the amplitude of circadian rhythm curve. <br>
 +
                                3 .
 +
                                The signal pathway of <i>Cyanobacteria</i> provides design space for other inducible promoters in the gene circuit, which will not interfere with other signal pathways such as the group induction system.</p>
 +
                                <h1>Application </h1>
 +
                                <p>In the literature, we see that other scholars' expectations of the Kai protein system were initially applied to the relief of jet lag. On this basis, we put forward more ideas about the application direction of this system. </p>
 +
                                    <p>Regular secretion of proteins can be used for periodic administration as a treatment combined with a related diagnostic system. </p>
 +
                                    <p>A biorhythm oscillator can be widely used in signal regulation of gene circuits. (timing signal transmitter)
 +
                                    Conditional expression can be achieved by changing the type of promoter (for example, specific expression of hTERT in tumor). </p>
 +
                                <h1>Result</h1>
 +
                                <p>The strain we studied was incubated in M9 medium and observed in microplate reader (TECAN INFINITE<sup>®</sup> M200 PRO). More details can be found by <a href="https://2018.igem.org/Team:XMU-China/Measurement">click here</a>. Here are the curves we made, which are based on the intensity of bioluminsscence recorded by microplate reader (TECAN INFINITE<sup>®</sup> M200 PRO).</p>
 +
                                <p class="F3"><img src="https://static.igem.org/mediawiki/2018/9/9d/T--XMU-China--measurement-kai-1.png"><p class="Figure_word"><strong>Figure 1.</strong> The bioluminescence at different times in Group A. The negative value is cause by the value of the control group.</p></p>
 +
                                <p class="F3"><img src="https://static.igem.org/mediawiki/2018/9/98/T--XMU-China--measurement-kai-2.png"><p class="Figure_word"><strong>Figure 2.</strong> The bioluminescence at different times in Group B. The negative value is cause by the value of the control group.</p></p>
 +
                                <p>To some extent, the rhythm of the oscillator can be seen from the curve. We did mathematic analysis data by TableCurve 2D<sup>®</sup>. </p>
 +
                                <p class="F3"><img src="https://static.igem.org/mediawiki/2018/c/cf/T--XMU-China--kai3.png"><p class="Figure_word"><strong>Figure 3.</strong> The bioluminescence at different times in Group B. The negative value is cause by the value of the control group.</p></p>
 +
                                <p class="F3"><img src="https://static.igem.org/mediawiki/2018/d/d3/T--XMU-China--kai4.png"><p class="Figure_word"><strong>Figure 4.</strong> The fitting curve of the oscillator in Group B. </p></p>
 +
                                <p>The stability of the oscillator is not good enough, which may be caused by the low robustness of the system we build. The expression quantity and proportion about such six proteins are different in E.coli and cyanobacteria. The expression efficiency of sfYFP we used can also infect the oscillator. Meanwhile, the limited sample size is non-ignorable factor. </p>
 +
                                <p>Based on what we got, we can draw the conclusion that we used three proteins, SasA, CikA and RpaA to connect the KaiC’s oscillators with the output signal. But the big step in utilization of circadian in synthetic biology still needs further work and more efforts to realize it.</p>
 +
 
 +
                                <h1>References</h1>
 +
                                <p class="reference">[1]Swan J A, Golden S, Liwang A, <i>et al</i>. Structure, function, and mechanism of the core circadian clock in <i>Cyanobacteria</i>. <i>Journal of Biological Chemistry</i>. <strong>2018</strong>, 293(14): 5026-5034. <br>
 +
                                    [2] Paddock M L, Boyd J S, Adin D M, <i>et al</i>. Active output state of the Synechococcus Kai circadian oscillator. <i>PNAS</i>. <strong>2013</strong>, 110(40): E3849-E3857. <br>
 +
                                    [3] Taniguchi Y, Katayama M, Ito R, <i>et al</i>. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. <i>Genes & Development</i>. <strong>2007</strong>, 21(1): 60-70.
 +
                                </p>
 
             </section>
 
             </section>
 
         </div>
 
         </div>
Line 326: Line 274:
 
         <div class="footer">
 
         <div class="footer">
 
             <div class="footer_top">
 
             <div class="footer_top">
                <img src="https://static.igem.org/mediawiki/2018/3/3d/T--XMU-China--xmu_is_different.png">
+
                    <img src="https://static.igem.org/mediawiki/2018/3/3d/T--XMU-China--xmu_is_different.png">
                <ul>
+
                    <ul>
                    <li>Home</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China">Home</a></a></li>
                    <li>Basic Part</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Model">Model</a></li>
                    <li>About us</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li>
                    <li>Composite Part</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Entrepreneurship">Entrepreneurship</a></li>
                    <li>Attribution</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li>
                </ul>
+
                    </ul>
                <ul>
+
                    <ul>
                    <li>Design</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li>
                    <li>Modeling</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Hardware</a></li>
                    <li>Engagemen</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Human Practices</a></li>
                    <li>Biosafety</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li>
                    <li>Contribution</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li>
                </ul>
+
                    </ul>
                <ul>
+
                    <ul>
                    <li>Collaboration</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li>
                    <li>Protocols</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Software">Software</a></li>
                    <li>Notebook</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li>
                    <li>Description</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/Members">Members</a></li>
                    <li>Experiment</li>
+
                        <li><a href="https://2018.igem.org/Team:XMU-China/After_iGEM">After iGEM</a></li>
                </ul>
+
                    </ul>
                <div class="clear"></div>
+
                </div>
            </div>
+
 
         </div>
 
         </div>
 
         <div class="bottom"></div>
 
         <div class="bottom"></div>

Latest revision as of 03:46, 18 October 2018

Team:XMU-China/Improve - 2018.igem.org

Improve

Background

Rhythmic oscillator remains a hot topic in synthetic biology for a long time. The periodic expression of protein can be realized by the rhythm oscillator, so as to realize the regular expression of non-inductor and the biological timer. The most common oscillator is the Repressilator, a circuit of three proteins encoded by three genes that suppress each other. However, there are some complex problems and many unknown factors in Repressilator. Besides, the stability of the constructed cycle time period is weak, which can cause problems for its further design and engineering utilization.

Twelve years ago, Harvard_2006 had tried to rebuild rhythmic oscillator of Cyanobacteria PCC7942 in E. coli. But the transcription factors that link the Kai clock to gene regulation in Cyanobacteria were not well understood. Therefore they tested their clock in E. coli by measuring the amounts of phosphorylated and unphosphorylated KaiC via western blot. More details can be viewed in the link.

However, some proteins related with Kai have been studied for years, such as SasA, RpaA and CikA. We XMU-China aimed to improve what Harvard did twelve years ago and push the utilization of circadian to a new level.

Figure 1. The schematic illustration of KaiABC system.

Abstract

Having considered the situation mentioned above, we turn our attention to the circadian rhythm system within the prokaryotic system. Finally, we choosed the Kai protein system as our project.

KaiABC system is the circadian system in Cyanobacteria. Oscillations are controlled by phosphorylation of the KaiC protein, which is modulated by the KaiA and KaiiB proteins. In 2015, Professor Silver of Harvard University first transplanted the circadian oscillators, KaiABC system and associated protein into noncircadian bacterium Escherichia. coli and successfully constructed a circadian rhythm. Realizing the potential application prosects of KaiABC system, we modified their design: we added RpaA, CikA and SasA into the genetic circuits. We aim to use such three proteins to connect the KaiC's oscillators with an output signal, which is supposed to be a 24-hour rhythmic fluorescence.

Figure 2. Timekeeping, entrainment and output signaling functions are highlighted within the oscillatory cycle of the cyanobacterial clock (imitate Swan J A, et al [1]).

Powered by ATPase activity of its CI domain, KaiC cycles through a series of phosphorylation states, which are interdependent on its quaternary structure. KaiA is bound to the CII domain of KaiC during the day and stimulates phosphorylation. This process is sensitive to the ATP/ADP ratio, which peaks at midday, providing an entrainment cue. At night, levels of oxidized quinones will rise in the cell, which entrains the clock as well. Around this time, KaiC reaches the pS/pT state, and SasA binds to the CI domain to activate RpaA. CI-bounding SasA is eventually competed away by KaiB. Binding of KaiB is slowed by its intrinsically unfavorable equilibrium that sequesters it in inactive states. Accumulation of KaiB in its KaiC-bound form recruits and inactivates KaiA. CikA also interacts with the fold-switched form of KaiB, which dephosphorylates RpaA and then inactivate it. [1]

Design

Figure 3. The gene circle of the Repressilator, which includes three proteins encoded by three genes that rebuild Kai circadian oscillator.

Three key proteins, KaiA, KaiB, and KaiC, comprise the central circadian oscillator . KaiC undergoes ordered autophosphorylation and autodephosphorylation events that signal the time of the day (oscillator timekeeping) for the control of genetic expression patterns. Most important to the circadian control of cellular responses is the ordered phosphorylation of two adjoining amino acid residues (Thr432 and Ser431) in the CII domain of KaiC; they become sequentially phosphorylated and then dephosphorylated during a cycle about 24h. As there are two phosphorylation sites, there are four possible states in every KaiC monomer (ST, SpT, pSpT, and pST. pS and pT represent phosphorylated Ser431 and phosphorylated Thr432, respectively). KaiA facilitates the phosphorylation of Thr432 and then Ser431. Subsequently, KaiB antagonizes KaiA activity, and then KaiC undergoes autodephosphorylation of Thr432 and then Ser431. The association/dissociation of all three Kai proteins controls the period, phase, and amplitude of the circadian oscillator. [2]

Figure 4. The gene circle of the transcription factors that link with the Kai clock.

For transcription, we selected SasA, CikA, and RpaA proteins, as well as pKaiBC, which can respond to the oscillator. Among them, self-phosphorylated KaiC can phosphorylate SasA, which will then transfer phosphate groups to RpaA, thereby activating RpaA as a transcription factor and inducing pKaiBC to transcribe downstream related proteins. But phosphorylated RpaA constantly activates transcription, so we added CikA as a protein to dephosphorylate the RpaA. In this way, the 24-hour oscillations of KaiC phosphorylation are transformed into periodic oscillations at the transcriptional level.

Figure 5. The gene circle of pKaiBC and reporter gene, which can respond to the oscillator.

Finally, we choosed sfYFP BBa_K864100 to present the rhythm, which is supposed to be a 24-hour rhythmic fluorescence. And Bioluminescence assays were performed as described. [3]

Advantage

1. Compared with the traditional repressilators and time-delay pacemakers, the Kai protein system has a longer period, and its stability is optimized due to its natural origin. Furthermore, Kai system can restore the rhythm in the natural state to the maximum extent, which is of more application value.
2. Through the mutation of KaiC phosphorylation site, the circadian cycle length can be controlled. By regulating the nutrition of the culture and the intensity of RBS, we can adjust the amplitude of circadian rhythm curve.
3 . The signal pathway of Cyanobacteria provides design space for other inducible promoters in the gene circuit, which will not interfere with other signal pathways such as the group induction system.

Application

In the literature, we see that other scholars' expectations of the Kai protein system were initially applied to the relief of jet lag. On this basis, we put forward more ideas about the application direction of this system.

Regular secretion of proteins can be used for periodic administration as a treatment combined with a related diagnostic system.

A biorhythm oscillator can be widely used in signal regulation of gene circuits. (timing signal transmitter) Conditional expression can be achieved by changing the type of promoter (for example, specific expression of hTERT in tumor).

Result

The strain we studied was incubated in M9 medium and observed in microplate reader (TECAN INFINITE® M200 PRO). More details can be found by click here. Here are the curves we made, which are based on the intensity of bioluminsscence recorded by microplate reader (TECAN INFINITE® M200 PRO).

Figure 1. The bioluminescence at different times in Group A. The negative value is cause by the value of the control group.

Figure 2. The bioluminescence at different times in Group B. The negative value is cause by the value of the control group.

To some extent, the rhythm of the oscillator can be seen from the curve. We did mathematic analysis data by TableCurve 2D®.

Figure 3. The bioluminescence at different times in Group B. The negative value is cause by the value of the control group.

Figure 4. The fitting curve of the oscillator in Group B.

The stability of the oscillator is not good enough, which may be caused by the low robustness of the system we build. The expression quantity and proportion about such six proteins are different in E.coli and cyanobacteria. The expression efficiency of sfYFP we used can also infect the oscillator. Meanwhile, the limited sample size is non-ignorable factor.

Based on what we got, we can draw the conclusion that we used three proteins, SasA, CikA and RpaA to connect the KaiC’s oscillators with the output signal. But the big step in utilization of circadian in synthetic biology still needs further work and more efforts to realize it.

References

[1]Swan J A, Golden S, Liwang A, et al. Structure, function, and mechanism of the core circadian clock in Cyanobacteria. Journal of Biological Chemistry. 2018, 293(14): 5026-5034.
[2] Paddock M L, Boyd J S, Adin D M, et al. Active output state of the Synechococcus Kai circadian oscillator. PNAS. 2013, 110(40): E3849-E3857.
[3] Taniguchi Y, Katayama M, Ito R, et al. labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC. Genes & Development. 2007, 21(1): 60-70.