Difference between revisions of "Team:CCU Taiwan/Model"

Line 174: Line 174:
  
  
<p class="first" id="ca2"><a href="https://2018.igem.org/Team:CCU_Taiwan/Binding">Polymer model</a></p>
+
<p class="first" id="ca2"><a href="https://2018.igem.org/Team:CCU_Taiwan/Polymer">Polymer model</a></p>
 
<p class="description"> &emsp;&emsp;We produce three enzymes, Px16, Px18 and Lac1. LIGGREEN is produced by coniferyl alcohol and enzymes. The goal of Polymer model is to estimate the polymerization between coniferyl alcohol and enzymes.<br>
 
<p class="description"> &emsp;&emsp;We produce three enzymes, Px16, Px18 and Lac1. LIGGREEN is produced by coniferyl alcohol and enzymes. The goal of Polymer model is to estimate the polymerization between coniferyl alcohol and enzymes.<br>
 
<strong>Modeling:</strong> We use Flory-Stockmayer theory to estimate the polymerization. Through the theory, we can control some conditions to do the oligomerization and let LIGGREEN be more biodegradation and chain-like.
 
<strong>Modeling:</strong> We use Flory-Stockmayer theory to estimate the polymerization. Through the theory, we can control some conditions to do the oligomerization and let LIGGREEN be more biodegradation and chain-like.

Revision as of 13:42, 15 November 2018

MODELING


  In the future, there will be fewer and fewer petrochemical resources on the planet, but plastic waste are keeping accumulating. When things change, what should we do? To solve the problem, we use LIGGREEN. We hope to establish a new production line for laminating paper products using biological materials. First, we use natural enzymes to synthesize the material. Through the synthetic reaction of enzymes and monolignols, we ensure our LIGGREEN structure is similar to natural compounds. This allows us to create a biological laminate which will not require petrochemicals and high energy consumption. Our modeling is mainly divided into two parts to prove the feasibility of our project: binding model and polymer model.


Binding model

  In our experiment, coniferyl alcohol would form resonance structure after dehydrogenation, these resonance structures would form dimers (β-5, β-O-4, β-β). These reactions are catalytic by the enzymes and the addition of water.
Modeling: we decided to confirm the feasibility of the reaction through Gibbs free energy calculation. (Calculation method using Spartan 16)

Figure1: Activation energy diagram when reaction is spontaneous.

Polymer model

  We produce three enzymes, Px16, Px18 and Lac1. LIGGREEN is produced by coniferyl alcohol and enzymes. The goal of Polymer model is to estimate the polymerization between coniferyl alcohol and enzymes.
Modeling: We use Flory-Stockmayer theory to estimate the polymerization. Through the theory, we can control some conditions to do the oligomerization and let LIGGREEN be more biodegradation and chain-like.