Difference between revisions of "Team:CCU Taiwan/Applied Design"

 
(24 intermediate revisions by 5 users not shown)
Line 92: Line 92:
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Medal"><li class="list" id="home3">Medals</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Medal"><li class="list" id="home3">Medals</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Judge"><li class="list" id="home4">For Judges</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Judge"><li class="list" id="home4">For Judges</li></a>
 +
<a href="https://2018.igem.org/Team:CCU_Taiwan/Achievements"><li class="list" id="home5">Achievements</li></a>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
Line 130: Line 131:
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Entrepreneurship"><li class="list" id="human_practice3">Entrepreneurship</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Entrepreneurship"><li class="list" id="human_practice3">Entrepreneurship</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/engaging_experts"><li class="list" id="human_practice4">Engaging Experts</li></a>
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/engaging_experts"><li class="list" id="human_practice4">Engaging Experts</li></a>
<a href="https://2018.igem.org/Team:CCU_Taiwan/Intergrate"><li class="list" id="human_practice5">Intergrated HP</li></a>
+
<a href="https://2018.igem.org/Team:CCU_Taiwan/Integrate"><li class="list" id="human_practice5">Integrated HP</li></a>
 
                         </ul>
 
                         </ul>
 
                     </li>
 
                     </li>
Line 147: Line 148:
  
 
     </header>
 
     </header>
 +
<div class="indicator">
  
 +
<div class="pointerProject" id="2"><a href="#ca1">Overview</a></div>
 +
<div class="pointerProject" id="3"><a href="#ca2">Enzyme production</a></div>
 +
</div>
  
 
<div class="backgroundProject">
 
<div class="backgroundProject">
Line 153: Line 158:
 
       <div class="content">
 
       <div class="content">
  
<br> <p class="first">Overview</p>
+
<br> <p class="first" id="ca1">Overview</p>
<p class="description">&emsp;&emsp;Our goal is to make a new material - Liggreen. We mimic the lignin of <I>Picea abies</I> and determine to use one type of monolignol for polymerization. By going through polymerization, we desire to make a material called Liggreen that is biodegradable, plastically, and more transparent than natural lignin.
+
<p class="description">&emsp;&emsp;Our goal is to make a new material — LIGGREEN. We mimic the lignin of <I>Picea abies</I> and determine to use one type of monolignol for polymerization.  
 +
LIGGREEN is biodegradable, plastically, and more transparently than natural lignin.
 
</p><br>
 
</p><br>
 
                  
 
                  
 
<div class="row">   
 
<div class="row">   
<div id="halftext3"><p class="description"><br><br><br><br>&emsp;&emsp;The structure of Picea abies (Norway spruce) contains up to 94% of coniferyl alcohol (Figure1). In general, the lignin structure of a tree with high Coniferyl alcohol content is relatively easily biodegraded and structurally tough, so it is also called soft lignin. Picea abies is also the mainstream of European tree species research. The lignin structure and related research on Picea abies are comprehensive, so we chose Picea abies as our tree species reference. </p></div>
+
<div id="halftext3"><p class="description"><br><br><br><br>&emsp;&emsp;The structure of <I>Picea abies</I> (Norway spruce) contains up to 94% of coniferyl alcohol (Figure1). In general, the lignin structure of a tree with high coniferyl alcohol content is relatively easily biodegraded and structurally tough, so it is also called soft lignin. <I>Picea abies</I> is also the mainstream of European tree species research. The lignin structure and related research on <I>Picea abies</I> are comprehensive, so we chose <I>Picea abies</I> as our tree species reference. </p></div>
 
<div id="Design1" class="polaroid">
 
<div id="Design1" class="polaroid">
 
                   <img src="https://static.igem.org/mediawiki/2018/b/b7/T--CCU_Taiwan--CCUligninHGS.png" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/b/b7/T--CCU_Taiwan--CCUligninHGS.png" width="100%">
Line 166: Line 172:
 
                 </div>
 
                 </div>
 
</div>
 
</div>
<p class="first">Production method</p>
+
<br>
<p class="description">&emsp;&emsp;In the production of Liggreen, we start from the production of enzymes. We found three enzymes:Px16, Px18 and Lac1 (Shigeto J et al.2016, Zhao Q et al. 2013), that help Coniferyl alcohol form bonds. In this regard, we want to produce dehydrogenase polymer (DHP) lignin (Ferrer JL et al. 2008). As mentioned, bonds between coniferyl alcohol are promoted by peroxidase and laccase. Peroxidase and laccase of different tree species will produce different bonds,while in Picea abies, the enzymes present are mainly Lac1, Px16 and Px18.
+
 
</p>
+
 
<a href="https://2018.igem.org/Team:CCU_Taiwan/Safety" style="font-size:20px; line-height:30px; color:blue;">Safety:</a><p class="description">&emsp;&emsp;For our production methods, we have designed an effective biological control. In the production line, we have a filter between the fermentation tank and the reaction tank. In addition, our production line will be heat-sterilized after the reaction tank. We have done experiments to prove that our yeast will not cause a biological crisis.
+
<p class="first" id="ca2">Enzyme production</p>
</p>
+
<p class="description">&emsp;&emsp;In the production of LIGGREEN, we start from the production of enzymes. We found three enzymes:Px16, Px18 and Lac1 (Shigeto J et al.2016, Zhao Q et al. 2013), that help coniferyl alcohol form bonds. In this regard, we want to produce dehydrogenase polymer (DHP) lignin (Ferrer JL et al. 2008). As mentioned, bonds between coniferyl alcohol are promoted by peroxidase and laccase. Peroxidase and laccase of different tree species will produce different bonds,while in <I>Picea abies</I>, the enzymes present are mainly Lac1, Px16 and Px18.
<div id="Design3" class="polaroid">
+
</p><br><br>
                   <img src="https://static.igem.org/mediawiki/2018/2/26/T--CCU_Taiwan--design-2.png" width="100%">
+
<div id="Design2" class="polaroid">
 +
                   <img src="https://static.igem.org/mediawiki/2018/c/c0/T--CCU_Taiwan--CCUDesign1.png" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure2:</p>
+
                     <p>Figure3: Project outline</p>
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
<p class="description">&emsp;&emsp;In the production of Liggreen, two enzymes extracted from plants are used for monolignol polymerization: peroxidase and laccase. Laccase reacts at a specific point on Coniferyl alcohol according to enzyme specificity, generating three binding structures—β-β, β-O-4, β-5 (Vanholme R et al. 2010); Peroxidase mainly cause polymerization between dimers, polymerizing β-O-4 and β-5 bonds.
+
<br><br>
</p>
+
  
<div id="Design2" class="polaroid">
+
<div class="row"> 
 +
<div id="halftext3"><p class="description"><br><br><br><br>&emsp;&emsp;We use commercial vector pGAPZ A from Invitrogen, which containing ZeocinTM resistance. However, ZeocinTM is expensive and licensed under patent. In order to keep the cost down, we have designed another selection—histidine deficiency.</p></div>
 +
<div id="Design1" class="polaroid">
 +
                  <img src="https://static.igem.org/mediawiki/2018/f/f2/T--CCU_Taiwan--131-2.png" width="100%">
 +
                  <div class="container">
 +
                    <p>Figure2: The design and construction of histidine deficiency.</p>
 +
                  </div>
 +
                </div>
 +
</div>
 +
<br><br>
 +
 
 +
<div class="row"> 
 +
<div id="halftext3"><p class="description"><br><br>&emsp;&emsp;In the production of LIGGREEN, two enzymes extracted from plants are used for monolignol polymerization: peroxidase and laccase. Laccase reacts at specific point on coniferyl alcohol according to enzyme specificity, generating three binding structures—β-β, β-O-4, β-5 (Vanholme R et al. 2010); Peroxidase mainly cause polymerization between dimers, polymerizing β-O-4 and β-5 bonds.
 +
</p></div>
 +
<div id="Design3" class="polaroid">
 
                   <img src="https://static.igem.org/mediawiki/2018/9/9e/T--CCU_Taiwan--CCU3bonds.jpg" width="100%">
 
                   <img src="https://static.igem.org/mediawiki/2018/9/9e/T--CCU_Taiwan--CCU3bonds.jpg" width="100%">
  <img src="https://static.igem.org/mediawiki/2018/5/5a/T--CCU_Taiwan--design-3.png" width="100%">
 
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure3: Dimerization of two dehydrogenated coniferyl alcohol monomers, resonance forms of dehydrogenated coniferyl alcohol.</p>
+
                     <p>Figure4: Dimerization of two dehydrogenated coniferyl alcohol monomers, resonance forms of dehydrogenated coniferyl alcohol.(Vanholme R. et al. 2010)</p>
 
                   </div>
 
                   </div>
 
                 </div>
 
                 </div>
 +
</div>
 +
<br><br>
  
 
+
<p class="description">&emsp;&emsp;Based on the above theory, we want to synthesize LIGGREEN using Coniferyl alcohol, Lac1, Px16 and Px18. We produce these enzymes by synthetic biology. Using <I>P. pastoris</I> to produce enzymes, <I>P. pastoris</I> can provide the N-Link glycosylation modification required by our enzymes (Spadiut O et al. 2013), and achieve high protein expression and exogenous gene regulation (α-factor).  
<p class="description">&emsp;&emsp;Based on the above theory, we want to synthesize Liggreen using Coniferyl alcohol, Lac1, Px16 and Px18. We produce these enzymes by synthetic biology. Using P. pastoris to produce enzymes, P. pastoris can provide the N-Link glycosylation modification required by our enzymes (Spadiut O et al. 2013), and achieve high protein expression and exogenous gene regulation (α-factor).  
+
 
</p>
 
</p>
 
<div id="Design4" class="polaroid">
 
<div id="Design4" class="polaroid">
  <img src="https://static.igem.org/mediawiki/2018/0/0a/T--CCU_Taiwan--reaction_tank-3.png" width="100%">
+
  <img src="https://static.igem.org/mediawiki/2018/9/93/T--CCU_Taiwan--LAI_productionline.jpg" width="100%">
 
                   <div class="container">
 
                   <div class="container">
                     <p>Figure3: </p>
+
                     <p>Figure5: Design of our entire production line.</p>
 
                   </div>
 
                   </div>
                 </div>
+
                 </div><br><br>
 
                 <p class="second">Reference</p>
 
                 <p class="second">Reference</p>
 
                 <p class="description"> Jun S.,Yuji T. (2016). Diverse functions and reactions of class III peroxidases. New Phytologist (2016) 209: 1395–1402. doi: 10.1111/nph.13738
 
                 <p class="description"> Jun S.,Yuji T. (2016). Diverse functions and reactions of class III peroxidases. New Phytologist (2016) 209: 1395–1402. doi: 10.1111/nph.13738
Line 207: Line 227:
 
<br>
 
<br>
 
<br>
 
<br>
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell (2013) 25(10):3976-87. doi: 10.1105/tpc.113.117770
+
Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in <I>Arabidopsis</I>. Plant Cell (2013) 25(10):3976-87. doi: 10.1105/tpc.113.117770
 
<br><br>
 
<br><br>
 
Spadiut O, Herwig C, (2013) Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm Bioprocess. 1(3): 283–295. doi:  10.4155/pbp.13.23
 
Spadiut O, Herwig C, (2013) Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm Bioprocess. 1(3): 283–295. doi:  10.4155/pbp.13.23

Latest revision as of 02:51, 6 December 2018

DESIGN


Overview

  Our goal is to make a new material — LIGGREEN. We mimic the lignin of Picea abies and determine to use one type of monolignol for polymerization. LIGGREEN is biodegradable, plastically, and more transparently than natural lignin.






  The structure of Picea abies (Norway spruce) contains up to 94% of coniferyl alcohol (Figure1). In general, the lignin structure of a tree with high coniferyl alcohol content is relatively easily biodegraded and structurally tough, so it is also called soft lignin. Picea abies is also the mainstream of European tree species research. The lignin structure and related research on Picea abies are comprehensive, so we chose Picea abies as our tree species reference.

Figure1: Typical H:G:S Ratio for Lignin from Biomass(source)


Enzyme production

  In the production of LIGGREEN, we start from the production of enzymes. We found three enzymes:Px16, Px18 and Lac1 (Shigeto J et al.2016, Zhao Q et al. 2013), that help coniferyl alcohol form bonds. In this regard, we want to produce dehydrogenase polymer (DHP) lignin (Ferrer JL et al. 2008). As mentioned, bonds between coniferyl alcohol are promoted by peroxidase and laccase. Peroxidase and laccase of different tree species will produce different bonds,while in Picea abies, the enzymes present are mainly Lac1, Px16 and Px18.



Figure3: Project outline







  We use commercial vector pGAPZ A from Invitrogen, which containing ZeocinTM resistance. However, ZeocinTM is expensive and licensed under patent. In order to keep the cost down, we have designed another selection—histidine deficiency.

Figure2: The design and construction of histidine deficiency.





  In the production of LIGGREEN, two enzymes extracted from plants are used for monolignol polymerization: peroxidase and laccase. Laccase reacts at specific point on coniferyl alcohol according to enzyme specificity, generating three binding structures—β-β, β-O-4, β-5 (Vanholme R et al. 2010); Peroxidase mainly cause polymerization between dimers, polymerizing β-O-4 and β-5 bonds.

Figure4: Dimerization of two dehydrogenated coniferyl alcohol monomers, resonance forms of dehydrogenated coniferyl alcohol.(Vanholme R. et al. 2010)



  Based on the above theory, we want to synthesize LIGGREEN using Coniferyl alcohol, Lac1, Px16 and Px18. We produce these enzymes by synthetic biology. Using P. pastoris to produce enzymes, P. pastoris can provide the N-Link glycosylation modification required by our enzymes (Spadiut O et al. 2013), and achieve high protein expression and exogenous gene regulation (α-factor).

Figure5: Design of our entire production line.



Reference

Jun S.,Yuji T. (2016). Diverse functions and reactions of class III peroxidases. New Phytologist (2016) 209: 1395–1402. doi: 10.1111/nph.13738

Ferrer JL, Austin MB, Stewart C Jr, Noel JP (2008). Structure and function of enzymes involved in the biosynthesis of phenylpropanoids. Plant Physiol Biochem (2008) 46(3):356-70. doi: 10.1016/j.plaphy.2007.12.009

Shigeto J, Tsutsumi Y. (2016) Diverse functions and reactions of class III peroxidases. New Phytol.(2016) 209(4):1395-402. doi: 10.1111/nph.13738

Zhao Q, Nakashima J, Chen F, Yin Y, Fu C, Yun J, Shao H, Wang X, Wang ZY, Dixon RA. (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in Arabidopsis. Plant Cell (2013) 25(10):3976-87. doi: 10.1105/tpc.113.117770

Spadiut O, Herwig C, (2013) Production and purification of the multifunctional enzyme horseradish peroxidase. Pharm Bioprocess. 1(3): 283–295. doi: 10.4155/pbp.13.23

Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. (2010) Lignin biosynthesis and structure. Plant Physiol. (2010) 153(3):895-905. doi: 10.1104/pp.110.155119