Difference between revisions of "Team:Tianjin/Experiments"

 
(68 intermediate revisions by 8 users not shown)
Line 8: Line 8:
 
         <meta content="width=device-width,initial-scale=1.0,maximum-scale=1.0,user-scalable=0;" name="viewport">
 
         <meta content="width=device-width,initial-scale=1.0,maximum-scale=1.0,user-scalable=0;" name="viewport">
 
         <meta name="renderer" content="webkit">
 
         <meta name="renderer" content="webkit">
         <meta name="author" content="773715181 HanJiaxiao">
+
         <meta name="author" content="773715181 Jiaxiao Han">
 
         <meta content="2018iGEM Team:Tianjin Kai System to control biological clock" name="description">
 
         <meta content="2018iGEM Team:Tianjin Kai System to control biological clock" name="description">
 
         <meta content="Team:Tianjin,iGEM:Tianjin,iGEM,2018iGEM" name="keywords">
 
         <meta content="Team:Tianjin,iGEM:Tianjin,iGEM,2018iGEM" name="keywords">
Line 15: Line 15:
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/bootstrap?action=raw&ctype=text/css">
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/bootstrap?action=raw&ctype=text/css">
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/base?action=raw&ctype=text/css">
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/base?action=raw&ctype=text/css">
         <link href="//netdna.bootstrapcdn.com/font-awesome/4.7.0/css/font-awesome.min.css" rel="stylesheet">
+
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/font-awesome?action=raw&ctype=text/css">
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/text?action=raw&ctype=text/css">
 
         <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/text?action=raw&ctype=text/css">
 
         <script src="https://2018.igem.org/Team:Tianjin/js/bootstrap?action=raw&ctype=text/javascript"></script>
 
         <script src="https://2018.igem.org/Team:Tianjin/js/bootstrap?action=raw&ctype=text/javascript"></script>
Line 28: Line 28:
 
.igem_2018_team_menu{display:none !important;}
 
.igem_2018_team_menu{display:none !important;}
 
</style>
 
</style>
<script src="https://use.fontawesome.com/597ba5ca72.js"></script>
+
 
 
<script>
 
<script>
 
$('#top_title').remove();$("#globalWrapper").removeAttr("id");$("#content").removeAttr("id");$("#HQ_page").removeAttr("id");$('.mw-body').removeClass('mw-body');$('.igem_2018_team_mobile_bar').remove();
 
$('#top_title').remove();$("#globalWrapper").removeAttr("id");$("#content").removeAttr("id");$("#HQ_page").removeAttr("id");$('.mw-body').removeClass('mw-body');$('.igem_2018_team_mobile_bar').remove();
Line 62: Line 62:
 
                 </a>
 
                 </a>
 
                 <ul class="dropdown-menu" style="left: -14px;">
 
                 <ul class="dropdown-menu" style="left: -14px;">
                     <li><a href="https://2018.igem.org/Team:Tianjin/Description">DESCRIPTION</a></li>
+
                     <li><a href="https://2018.igem.org/Team:Tianjin/Description">BACKGROUND</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Design">DESIGN</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Design">DESIGN</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Experiments">EXPERIMENTS</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Experiments">EXPERIMENTS</a></li>
Line 95: Line 95:
 
                 </a>
 
                 </a>
 
                 <ul class="dropdown-menu">
 
                 <ul class="dropdown-menu">
                     <li><a href="https://2018.igem.org/Team:Tianjin/Human_Practices">INTEGRATED HP</a></li>
+
                     <li><a href="https://2018.igem.org/Team:Tianjin/Human_Practices">INTEGRATED</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Collaborations">COLLABORATION</a></li>
 
                     <li><a href="https://2018.igem.org/Team:Tianjin/Collaborations">COLLABORATION</a></li>
                     <li><a href="https://2018.igem.org/Team:Tianjin/Public_Engagement">EDU&PUBLIC ENGAGEMENT</a></li>
+
                     <li><a href="https://2018.igem.org/Team:Tianjin/Public_Engagement">PUBLIC ENGAGEMENT</a></li>
 
                 </ul>
 
                 </ul>
 
             </li>
 
             </li>
Line 111: Line 111:
 
             </li>
 
             </li>
 
             <li>
 
             <li>
                 <a href="https://igem.org/2018_Judging_Form?team=Tianjin">
+
                 <a href="https://2018.igem.org/Team:Tianjin/Judging">
                     JUDGING FORM                
+
                     FOR JUDGES                
 
                 </a>
 
                 </a>
 
             </li>
 
             </li>
Line 124: Line 124:
 
             <div class="col-xs-12 titleBox">
 
             <div class="col-xs-12 titleBox">
 
                 <div class="title title-big">
 
                 <div class="title title-big">
                     <p>Experiments</p>
+
                     <p>EXPERIMENTS</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
         <div class="row partition">
+
         <div class="row partition"></div>
           
+
        <div class="row partition"></div>
         </div>
+
         <div class="row partition"></div>
 +
       
 +
 
 
         <div class="row">
 
         <div class="row">
 
             <div class="col-xs-12 ">
 
             <div class="col-xs-12 ">
 
                 <div class="title title-normal">
 
                 <div class="title title-normal">
                     <p>KaiABC plasmids</p>
+
                     <p>Reconstruction of the KaiABC system</p>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <div class="row partition"></div>
 +
        <div class="row partition"></div>
 +
 
 +
        <div class="row">
 +
            <div class="col-xs-12 ">
 +
                <div class="title title-small">
 +
                    <p>Promoter selection</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
              Our aim is to reconstruct the KaiABC circadian clock system of prokaryotic cyanobacteria in nonciracdian eukaryotic <i>Saccharomyces cerevisiae</i>. First of all, we hope to introduce the core proteins of cyanobacterial circadian clock, KaiA, KaiB and KaiC, into yeast to make them oscillate stably. To prevent KaiC from being trapped in phosphorylation state, we select three auxiliary proteins: SasA, CikA and RpaA. The promoter of prokaryotes can not be directly recognized by yeast, so we abandon the way of using the relevant promoters of the RpaA-mediated downstream reaction which are inherent in cyanobacterial, instead use the yeast two-hybrid system to characterize the KaiABC circadian clock system.  
+
                    In the cyanobacterium <em>Synechococcus elongatus</em>(PCC 7942), three genes (<em>kaiA</em>, <em>kaiB</em>, and <em>kaiC</em>) are essential components of the circadian clock, whose concentration ratio is also important. According to previous studies,  the concentration ratio of these three core proteins, KaiA, KaiB and KaiC, is  1:1:4 (by weight).  
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
        </div>
+
             <div class="col-xs-12 text">
 
+
        <div class="row">
+
             <div class="col-lg-12 text">
+
 
                 <p>
 
                 <p>
                  We select three pairs of periodically binding proteins, KaiC-SasA, KaiC-CikA, and KaiB-KaiC, as the "prey" and "bait" of the yeast two-hybrid system, respectively, to construct fusion proteins with activation domain(AD) or DNA binding domain(BD) of Gal4 protein. Taking for example the KaiC-SasA couple, we assemble three gene expression cassettes of KaiA, KaiB, and AD-KaiC onto the pRS413 plasmid named pABaC, and assemble other three gene expression cassettes of CikA, RpaA and BD-SasA onto the pRS415 plasmid named pCiRbS. Other plasmids involved are pbCiRS (the recombinant pRS415 containing cassettes of BD-CikA, RpaA, SasA), pbCRCi (the recombinant pRS413 containing cassettes of BD-KaiC, RpaA, CikA), paBAS (the recombinant pRS415 containing cassettes of AD-KaiB, KaiA, SasA). When the two plasmids are successfully expressed in yeast, that is to say, when the KaiABC circadian clock system successfully operates, KaiA binds to the CII subunit of KaiC during the subjective daytime, stimulating the autokinase activity of the CII subunit, resulting in the phosphorylation of CII subunit. Residues Ser431 and Thr432 are phosphorylated in turn, during which SasA binds to phosphorylated KaiC, allowing AD and BD to be spatially close enough to activate the promoters <i>Gal1</i> promoter, <i>Gal2</i> promoter that regulate downstream genes. When KaiC phosphorylation is complete, the KaiC protein undergoes loop stacking, which causes the binding site of KaiA to be blocked and the binding site of KaiB to be exposed. At the same time, KaiA detaches from KaiC, and KaiB binds to KaiC, stimulating its dephosphorylation. KaiB has a competitive relationship with SasA, which means that SasA falls off from KaiC, causing AD and BD to move away from each other and the related downstream genes not to be started.
+
                    Researchers has incubated KaiC with KaiA and KaiB in vitro at a ratio similar to that measured in vivo in the presence of 1 mM ATP. As a result, KaiC phosphorylation has robustly oscillated for at least three cycles without damping. But the amplitude of this in vitro was smaller than that observed in vivo under continuous light conditions.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                    More specifically, the change in concentration of these three kind of &nbsp;proteins could exert a complex impact on the KaiABC circadian clock system, or in other words, the circadian oscillation of KaiC phosphorylation. For example, in cyanobacteria,  KaiC represses its own (<em>kaiBC</em>) expression, whereas KaiA enhances the expression of <em>kaiBC</em>. Therefore, KaiC and KaiA could be, respectively, regarded as negative and positive factors functioning in circadian feedback regulation of <em>kaiBC</em>&nbsp;expression.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                    Besides, sufficient and appropriate protein concentrations is necessary for Kai protein interactions and KaiC phosphorylation. To take an example, several researchers have already explored the effect of Kai protein concentration on the rhythm of KaiC phosphorylation. In experiment, the standard mixture (×1 solution) was consisted of 1.2 μM KaiA, 3.5 μM KaiB, and 3.5 μM KaiC. When the proteins were at 2.5× or 5× protein concentrations, the KaiC phosphorylation rhythms were nearly the same as those measured under standard conditions. While lowering the protein concentration to 1/10 of the standard mixture, the amplitude of the KaiC phosphorylation rhythm was reduced and the period of the rhythm was prolonged. What’s more, at 1/20 or 1/40 of the standard concentrations, KaiC would be remained dephosphorylated. In addition, in the case of a decrease of the relative concentrations of KaiA or KaiB to KaiC, the rhythm could change accordingly. While lowering either KaiA or KaiB concentrations to one-fourth or one-third of the standard mixture abolished cycling, the rhythm was still maintained in the presence of a two-thirds concentration of either KaiA or KaiB.  However, the period is extended by lowering KaiA concentrations to two-thirds, while lowering the KaiB concentration to two-thirds of the standard couldn’t alter the rhythm.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                    Owing to a series of reasons like the lack of a complete transcriptional/translational feedback loop(TTFL), the KaiABC system, reconstituted in yeast cells, can not express the correct protein concentrations as in cyanobacteria. Therefore, we intend to get a good command of protein concentrations by selecting promoters of different intensity to construct the corresponding expression cassettes, thus the KaiABC system works better and more stably. Besides, we measure our promoter strength of six core genes convenient for the analysis of the final results.
 +
              <br><br>
 +
                    Based on the research measuring the promoter strength of 14 constitutive promoters by GFP fluorescence intensity[4], we designed&nbsp;our experiment about the measurement of the promoters by constructing mCherry cassette with different promoters to measure the fluorescence intensity of mCherry, representing the promoter strength. Before our experiment, we selected&nbsp;three common promoters which are <em>TDH3 </em>promoter, <em>PGK1</em>&nbsp;promoter and <em>TEF1</em>&nbsp;promoter<em>&nbsp;</em>according the data of the paper as our promoters of six core genes. The detailed information of plasmids we constructed were shown on the table 1 below. We assembled our plasmids by yeast homologous recombination. Taking <em>TEF1P</em>-<em>mCherry</em>-<em>TEF1T</em>cassette for example, we obtained fragments <em>TEF1P, mCherry </em>and<em>&nbsp;TEF1T</em>with homologous arms by PCR and then we transformed three fragments and linearized vector pRS415 which had been digested by enzymes <em>Hind</em>Ⅲ and <em>Not</em>&Iota; &nbsp;into <em>Saccharomyces cerevisiae</em><em>&nbsp;</em>to do yeast homologous recombination. Through the screening of nutrition label and the verification of PCR, we got the right strains and did further measurement.  
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <table class="table table-bordered">
 +
                    <thead style="background: #222!important;color: white;">
 +
                      <tr>
 +
                          <th colspan="12">Table 1  Structure of Recombinant Plasmids</th>
 +
                      </tr>
 +
                    </thead>
 +
                    <tbody>
 +
                        <tr><td colspan="2" width="665"><p>Table 1 Plasmids constructed for the measurement of the promoter strength</p></td></tr><tr><td width="332"><p>plasmids</p></td><td width="332"><p>cassette</p></td></tr><tr><td width="332"><p><em>pTEmCTE</em></p></td><td width="332"><p><em>TEF1P</em>-<em>mCherry</em>-<em>TEF1T</em></p></td></tr><tr><td width="332"><p><em>pPGmCPG</em></p></td><td width="332"><p><em>PGK1P</em>-<em>mCherry</em>-<em>PGK1T</em></p></td></tr><tr><td width="332"><p><em>pTDmCAD</em></p></td><td width="332"><p><em>TDH3P</em>-<em>mCherry</em>-<em>ADH1T</em></p></td></tr>           
 +
                    </tbody>
 +
                </table>
 +
                <p class="font-size:14px">
 +
                    Notes for table 1:<em>TEF1P</em>, <em>TEF1T</em>, <em>PGK1P</em>, <em>PGK1T</em>, <em>TDH3P </em>and <em>ADH1T </em>represent <em>TEF1</em>&nbsp;promoter, <em>TEF1</em>&nbsp;terminator, <em>PGK1</em>&nbsp;promoter, <em>PGK1</em>&nbsp;terminator, <em>TDH3</em>&nbsp;promoter and <em>ADH1</em>&nbsp;terminator.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                    In our experiment, we only measured the promoters we have selected before. Our results were as follows.
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
        </div>
 
  
        <div class="row">
+
 
 +
 
 +
 
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/8/85/T--Tianjin--experiment1.png" height="350"></div>
 +
<div class="col-xs-12 picture">
 +
                                    <p id="8">
 +
                                        Figure 1  the promoter strength characterized by mCherry<br>
 +
                                    </p>
 +
                                </div>
 +
 
 +
 
 +
 
 +
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
                  In the experiment, we have used the restriction enzyme ligation method, Gibson assembly method and yeast homologous recombination method successively to construct the plasmids mentioned before. Since the experimental results show that the first two methods are somewhat less efficient than the third one, we finally use the yeast homologous recombination method for plasmids assembly.(Table 1) Taking KaiC-SasA couple as an example, we first use PCR to add corresponding homology arms to the ends of ten gene fragments including <i>TEF1P</i> (the promoter of <i>TEF1</i>, <i>kaiA</i>, <i>TEF1T</i>(the terminator of <i>TEF1</i>), <i>PGK1P</i> (the promoter of <i>PGK1</i>), <i>kaiB</i>, <i>PGK1T</i> (the terminator of <i>PGK1</i>), <i>TDH3P</i> (the promoter of <i>TDH3</i>), <i>AD</i>, <i>kaiC</i> and ADH1T(the terminator of <i>ADH1</i>, then we introduce the ten gene fragments into the yeast together with the pRS413 plasmid cut by EcoRI and <i>Not</i>I to construct three gene expression cassettes of KaiA(<i>TEF1P-kaiA-TEF1T</i>), KaiB(<i>PGK1P-kaiB-PGK1T</i>), AD-KaiC(<i>TDH3P-AD-kaiC-ADH1T</i>. The right strains containing the recombinant plasmid are screened by nutrition labeling, verified by PCR tag and then the recombinant plasmid is amplified in Escherichia <i>Coli</i> to obtain a large amount. Similarly, a sufficient number of recombinant pRS415 plasmids are obtained using the same way. Finally, we transform the two kinds of plasmids into the final chassis cell,  Saccharomyces <i>cerevisiae</i> BY4741, to complete the construction of the KaiABC system.At last, we get a number of different strains respectively containing a pair of selected recombinant plasmids and one plasmid with different reporter gene (Table 2).
+
                    What&rsquo;s more, we constructed&nbsp; <a href="#table2">three combinations</a> with two kinds of promoter-gene combinations to character different forms of oscillation. As is shown in the Figure 1, we increased the relative concentration of KaiA protein greatly and decreased the relative concentration of KaiB protein slightly in KaiC-SasA and KaiC-CikA combinations, which shortened<a href="https://2018.igem.org/Team:Tianjin/Demonstrate"> the period of the circadian oscillation&nbsp;.</a> In our KaiB-KaiC combination, we increased the relative concentration of KaiA protein greatly.  
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 
+
        <div class="row partition"></div>
 
         <div class="row">
 
         <div class="row">
             <div class="col-lg-12 text">
+
             <div class="col-xs-12 ">
                 <table class="table table-bordered">
+
                <div class="title title-small">
 +
                    <p>Plasmids assembly</p>
 +
                </div>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
              Our aim is to reconstruct the KaiABC circadian clock system of prokaryotic cyanobacteria in nonciracdian eukaryotic <i>Saccharomyces cerevisiae</i>. First of all, we hope to introduce the core proteins of cyanobacterial circadian clock, KaiA, KaiB and KaiC, into yeast to make them oscillate stably. To prevent KaiC from being trapped in phosphorylation state, we select three auxiliary proteins: SasA, CikA and RpaA. The promoter of prokaryotes can not be directly recognized by yeast, so we abandon the way of using the relevant promoters of the RpaA-mediated downstream reaction which are inherent in cyanobacterial, instead use the yeast two-hybrid system to characterize the KaiABC circadian clock system.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                  We selected three pairs of periodically binding proteins, KaiC-SasA, KaiC-CikA, and KaiB-KaiC, as the "prey" and "bait" of the yeast two-hybrid system, respectively, to construct fusion proteins with activation domain(AD) or DNA binding domain(BD) of Gal4 protein. Taking for example the KaiC-SasA couple, we assembled three gene expression cassettes of KaiA, KaiB, and AD-KaiC onto the pRS413 plasmid named pABaC, and assembled other three gene expression cassettes of CikA, RpaA and BD-SasA onto the pRS415 plasmid named pCiRbS. Other plasmids involved were pbCiRS (the recombinant pRS415 containing cassettes of BD-CikA, RpaA, SasA), pbCRCi (the recombinant pRS413 containing cassettes of BD-KaiC, RpaA, CikA), paBAS (the recombinant pRS415 containing cassettes of AD-KaiB, KaiA, SasA). When the two plasmids are successfully expressed in yeast, that is to say, when the KaiABC circadian clock system successfully operates, KaiA binds to the CII subunit of KaiC during the subjective daytime, stimulating the autokinase activity of the CII subunit, resulting in the phosphorylation of CII subunit. Residues Ser431 and Thr432 are phosphorylated in turn, during which SasA binds to phosphorylated KaiC,  allowing AD and BD to be spatially close enough to activate the promoters <i>Gal1 promoter</i>, <i>Gal2 promoter</i> that regulate downstream genes. When KaiC phosphorylation is complete, the KaiC protein undergoes loop stacking, which causes the binding site of KaiA to be blocked and the binding site of KaiB to be exposed. At the same time, KaiA detaches from KaiC, and KaiB binds to KaiC, stimulating its dephosphorylation. KaiB has a competitive relationship with SasA, which means that SasA falls off from KaiC, causing AD and BD to move away from each other and the related downstream genes not to be started.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
                  In the experiment, we have used the restriction enzyme ligation method, Gibson assembly method and yeast homologous recombination method successively to construct the plasmids mentioned before. Since the experimental results showed that the first two methods were somewhat less efficient than the third one, we finally used the yeast homologous recombination method for plasmids assembly.
 +
(Table 1) Taking KaiC-SasA couple as an example, we first used PCR to add corresponding homology arms to the ends of ten gene fragments including <i>TEF1P</i> (the promoter of <i>TEF1</i>, <i>kaiA</i>, <i>TEF1T</i>(the terminator of <i>TEF1</i>), <i>PGK1P</i> (the promoter of <i>PGK1</i>), <i>kaiB</i>, <i>PGK1T</i> (the terminator of <i>PGK1</i>), <i>TDH3P</i> (the promoter of <i>TDH3</i>), <i>AD</i>, <i>kaiC</i> and ADH1T(the terminator of <i>ADH1</i>, then we introduced the ten gene fragments into the yeast together with the pRS413 plasmid cut by EcoRI and <i>Not</i>I to construct three gene expression cassettes of KaiA(<i>TEF1P-kaiA-TEF1T</i>), KaiB(<i>PGK1P-kaiB-PGK1T</i>), AD-KaiC(<i>TDH3P-AD-kaiC-ADH1T</i>. The right strains containing the recombinant plasmid were screened by nutrition labeling,  verified by PCR tag and then the recombinant plasmid was amplified in Escherichia <i>Coli</i> to obtain a large amount. Similarly, a sufficient number of recombinant pRS415 plasmids were obtained using the same way. Finally, we transformed the two kinds of plasmids into the final chassis cell,  Saccharomyces <i>cerevisiae</i> BY4741, to complete the construction of the KaiABC system.
 +
                </p>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                 <table id="table2" class="table table-bordered">
 
                     <thead style="background: #222!important;color: white;">
 
                     <thead style="background: #222!important;color: white;">
 
                       <tr>
 
                       <tr>
                           <th colspan="12">Table 1 Structure of Recombinant Plasmids</th>
+
                           <th colspan="12">Table 2 Structure of Recombinant Plasmids</th>
 
                       </tr>
 
                       </tr>
 
                     </thead>
 
                     </thead>
Line 266: Line 344:
 
                     </tbody>
 
                     </tbody>
 
                 </table>
 
                 </table>
                <div class="row partition"></div>
+
            </div>
 +
            <!--<div class="col-xs-12 text">
 
                 <table class="table table-bordered">
 
                 <table class="table table-bordered">
 
                     <thead style="background: #222!important;color: white;">
 
                     <thead style="background: #222!important;color: white;">
 
                         <tr>
 
                         <tr>
 
                         <th colspan="2">
 
                         <th colspan="2">
                             Table 2 &nbsp;Final Experimental Strains
+
                             Table 3 &nbsp;Final Experimental Strains
 
                         </th>
 
                         </th>
 
                         </tr>
 
                         </tr>
Line 279: Line 358:
 
                     </tbody>
 
                     </tbody>
 
                 </table>
 
                 </table>
 +
            </div>-->
 +
            <div class="col-xs-4 picture">
 +
                <img src="https://static.igem.org/mediawiki/2018/6/6c/T--Tianjin--experiment2.png">
 +
            </div>
 +
            <div class="col-xs-4 picture">
 +
                <img src="https://static.igem.org/mediawiki/2018/1/12/T--Tianjin--experiment3.png">
 +
            </div>
 +
            <div class="col-xs-4 picture">
 +
                <img src="https://static.igem.org/mediawiki/2018/1/19/T--Tianjin--experiment4.png">
 +
            </div>
 +
            <div class="col-xs-2">
 +
            </div>
 +
            <div class="col-xs-4 picture">
 +
                <img src="https://static.igem.org/mediawiki/2018/f/fe/T--Tianjin--experiment5.png">
 +
            </div>
 +
            <div class="col-xs-4 picture">
 +
                <img src="https://static.igem.org/mediawiki/2018/a/ab/T--Tianjin--experiment6.png">
 +
            </div>
 +
            <div class="col-xs-2">
 +
            </div>
 +
            <div class="col-xs-12 picture">
 +
                <p>Figure 2 Map of the five plasmids</p>
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 +
 +
<div class="row partition"></div>
 +
        <div class="row partition"></div>
  
 
         <div class="row">
 
         <div class="row">
 
             <div class="col-xs-12 ">
 
             <div class="col-xs-12 ">
 
                 <div class="title title-normal">
 
                 <div class="title title-normal">
                     <p>Construction of the pathway for characterization</p>
+
                     <p>Construction of the reporter circuits</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
            <div class="col-xs-12 text">
+
        <div class="row partition"></div>
                <p>
+
        <div class="row partition">
              <br>
+
              To characterize the viability of our circadian clock in the <i>Saccharomyces cerevisiae</i>, we constructed reporter plasmids containing the report genes that functions efficiently in <i>Saccharomyces cerevisiae</i>. <br>
+
              Prior to we doing this, our modeling group’s members facilitated us to pick out the fluorescent proteins fitted for our project most. They set up a Evaluation Model, which takes issues like lifetime, quantity yield(QY), bleaching time and strokes into account to select the suitable fluorescent proteins among millions of alternatives. The details about the Evaluation Model can be found in <a href="https://2018.igem.org/Team:Tianjin/Model">this page</a>. We finally picked out two winners among hundreds of participants: EYFP(<a href="http://parts.igem.org/Part:BBa_E2030">BBa_E2030</a> ) and mCherry (<a href="http://parts.igem.org/Part:BBa_E2060">BBa_E2060</a>).
+
                </p>
+
            </div>
+
 
         </div>
 
         </div>
        <div class="row">
+
             <div class="col-xs-12 ">
             <div class="col-xs-12 text">
+
                 <div class="title title-small">
                <p>
+
                     <p>Reporter genes selection</p>
                    Besides, thanks to the help of Prof. Li, we decided to simultaneously use the luciferase, a popular choice as a reporter gene. Functional enzyme is created immediately upon translation and the assay is rapid, reliable and easy to perform with ATP, oxygen, and luciferin as substrates. Using luciferase as the genetic reporter in analysis is well suited to laboratory automation and high-throughput applications. <i>As for</i> NanoLuc luciferase, it uses a novel coelenterazine analog to produce high intensity, glow-type luminescence. The luminescent reaction is designed to suppress background luminescence for maximal assay sensitivity. It also possesses a number of physical properties that make it an excellent reporter protein: small, monomeric enzyme, high thermal stability and so on. <br>
+
                </p>
+
                 <div class="col-lg-4 picture">
+
                     <img src="img/1.jpg">
+
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
        </div>
+
 
        <div class="row">
+
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
                    Due to the Y2H system, the promoter needs to have less leakage expression and respond sensitively to the combination of AD and BD. After a thorough search, we eventually found a mutant <i>Gal1</i> promoter, which was designed to functionally reduce false positive conditions. More information can be found in <a href="http://parts.igem.org/Part:BBa_K2637059"></a> this page. Besides, we selected another <i>Gal2</i> promoter, which works independently in order to improve the accuracy.
+
To characterize the viability of our circadian clock, we required special report genes that functions sensitively in Saccharomyces cerevisiae. There are many report genes available but not everyone is suitable. We looked up papers and websites, screening massively. Our <a href="https://2018.igem.org/Team:Tianjin/Model">modeling</a> group facilitated us to rate the fluorescent proteins fitted for our project most. They set up an Evaluation Model, which takes issues like lifetime, quantity yield(QY) and strokes into account to select the suitable fluorescent proteins among millions of alternatives. <br><br>
 +
Besides, Prof. Li recommended <i>luciferase</i> for us. The functional enzyme is created immediately upon translation and the assay is rapid, reliable and easy to perform with ATP, oxygen, and luciferin as substrates. It possesses a number of physical properties that make it an excellent reporter protein: small, monomeric enzyme, high thermal stability and so on.
 +
<br><br>
 +
we primarily chose Fluc, NanoLuc(BBa_K1680009), EYFP(BBa_E2030), mCherry(BBa_E2060), mOrange, and ECFP(BBa_I13602) as alternatives. Then verification experiments were operated by linking report genes above with constitutive promoter <em>TDH3 promoter</em> and measured the fluorescence intensity.
 +
<br>
 +
Taking <em>TDH3P-mCherry-ADH1T</em> cassette for example, we obtained fragments <em>TDH3P,mCherry </em>and<em>&nbsp;ADH1T </em>with homologous arms by PCR and then we transformed three fragments and linearized vector pRS413 which had been digested by enzymes BamH&Iota; and <em>Not</em>  Ι into <em>Saccharomyces cerevisiae</em><em>&nbsp;</em>to do yeast homologous recombination.Through the screening of nutrition label and the verification of PCR, we got the right strains for further measurement.
 +
<br> The detailed information were shown on the table2 below. <br>
 +
 
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
        </div>
 
        <div class="row">
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                <p>
 
                    We were successfully cloning four kinds of plasmids carrying the genes of mCherry, EYFP, <em>NanoLuc</em>&nbsp;and <em>Fluc</em>&nbsp;respectively with the <em>Gal1</em>&nbsp;promoter&nbsp;and the <em>ADH1T</em>&nbsp;terminator by harnessing the principles of yeast homologous recombination. And also other four kinds of plasmids with the <em>Gal2</em>&nbsp;promoter resembled the above four types, to compare which promoter works better. Moreover, to avoid the appearance of false positive phenomena which are likely to happen in&nbsp;the yeast two-hybrid system, we constructed the plasmids in four genres, and every kind of plasmids contained two cassettes consisting of<em>&nbsp;Gal1</em>&nbsp;promoter with varying fluorescent proteins and <em>Gal2</em>&nbsp;promoter with different luciferases.&nbsp;Only when both reporter genes function normally can we ensure that the system succeeds. all circuits are constructed respectively on the plasmid pRS416 and the details can be found in the table.1 below.&nbsp;<br><br>
 
                    Ultimately, fluorescence spectrophotometer and multilabel reader&nbsp;were performed on our detecting process to analyze the expression of the fluorescent proteins and luciferases of the plasmid we constructed in the <em>Saccharomyces </em><em>cerevisia</em><em>e</em>&nbsp;respectively.<br>
 
                </p>
 
                <div class="col-lg-4 picture">
 
                    <img src="img/1.jpg">
 
                </div>
 
            </div>
 
        </div>
 
        <div class="row">
 
            <div class="col-xs-12 text">
 
                <div class="col-xs-12">
 
                    <div class="title title-normal">
 
                        <p>Table1 The structure of reporter plasmids</p>
 
                    </div>
 
                </div>
 
 
                 <table class="table table-bordered">
 
                 <table class="table table-bordered">
 
                     <thead style="background: #222!important;color: white;">
 
                     <thead style="background: #222!important;color: white;">
 
                         <tr>
 
                         <tr>
                             <th>name</th>
+
                             <th colspan="2">
                             <th>number</th>
+
                                Table 3. Plasmids constructed for the measurement of various fluorescent proteins and luciferases
 +
                            </th>
 +
                        </tr>
 +
                        <tr>
 +
                             <th>plasmids</th>
 
                             <th>cassette</th>
 
                             <th>cassette</th>
 
                         </tr>
 
                         </tr>
 
                     </thead>
 
                     </thead>
 
                     <tbody>
 
                     <tbody>
                         <tr><td><p>p1m</p></td><td><p>BBa_K2637036</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T</em></p></td></tr><tr><td><p>p1E</p></td><td><p>BBa_K2637037</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T</em></p></td></tr><tr><td><p>p1N</p></td><td><p>BBa_K2637038</p></td><td><p><em>G</em><em>al1p-NanoLuc-ADH1T</em></p></td></tr><tr><td><p>p1F</p></td><td ><p>\</p></td><td><p><em>G</em><em>al1p-Fluc-ADH1T</em></p></td></tr><tr><td><p>p2m</p></td><td><p>BBa_K2637039</p></td><td><p><em>G</em><em>al2p-mCherry-ADH1T</em></p></td></tr><tr><td><p>p2E</p></td><td><p>BBa_K2637040</p></td><td><p><em>G</em><em>al2p-EYFP-ADH1T</em></p></td></tr><tr><td ><p>p2N</p></td><td><p>BBa_K2637041</p></td><td><p><em>G</em><em>al2p-NanoLuc-ADH1T</em></p></td></tr><tr><td><p>p2F</p></td><td><p>\</p></td><td><p><em>G</em><em>al2p-Fluc-ADH1T</em></p></td></tr><tr><td><p>p1m2N</p></td><td><p>BBa_K2637042</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T-</em><em>&nbsp;G</em><em>al2p-NanoLuc-CYC1</em></p></td></tr><tr><td><p>p1E2N</p></td><td><p>BBa_K2637043</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T-</em><em>&nbsp;G</em><em>al2p-NanoLuc-CYC1</em></p></td></tr><tr><td><p>p1m2F</p></td><td><p>\</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T-</em><em>&nbsp;G</em><em>al2p-Fluc-CYC1</em></p></td></tr><tr><td><p>p1E2F</p></td><td ><p>\</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T-</em><em>&nbsp;G</em><em>al2p-Fluc-CYC1</em></p></td></tr>  
+
                         <tr><td width="328"><p><em>pTDmCAD</em></p></td><td width="328"><p><em>TDH3P-mCherry-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDmOAD</em></p></td><td width="328"><p><em>TDH3P-mOrange-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDEYAD</em></p></td><td width="328"><p><em>TDH3P-EYFP-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDECAD</em></p></td><td width="328"><p><em>TDH3P-ECFP-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDRAD</em></p></td><td width="328"><p><em>TDH3P-RFP-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDFAD</em></p></td><td width="328"><p><em>TDH3P-Fluc-ADH1T</em></p></td></tr><tr><td width="328"><p><em>pTDNAD</em></p></td><td width="328"><p><em>TDH3P-Nanoluc-ADH1T</em></p></td></tr>  
 
                     </tbody>
 
                     </tbody>
                 </table>                            
+
                 </table>
 
             </div>
 
             </div>
        </div>
 
        <div class="row">
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                 <p>
+
                 <p>Part of our results is shown on the figure below.</p>
                    (Chromatin remodeling): To test whether the main circadian clock of cyanobacteria could have effect on the whole regulation&nbsp;of <em>Saccharomyces cerevisiae</em>, we substituted&nbsp;the genes controlling the chromatin remodeling in the yeast for report genes to seek for&nbsp;the answers. Prior to we constructing the plasmids we needed, we deleted the genes of <em>ISWI1</em>&nbsp;and <em>ISWI2</em>&nbsp;which both play significant roles in chromatin remodeling utilizing the CRISPR-cas9 technology. Afterwards, We constructed the pRS416 plasmid containing the two cassettes consisting of <em>Gal1</em>&nbsp;promoter with <em>ISWI1</em>&nbsp;and <em>ADH1T</em>&nbsp;terminator and <em>Gal2</em>&nbsp;promoter with <em>ISWI2</em>&nbsp;and <em>CYC1</em>&nbsp;terminator.&nbsp;And if the core oscillator worked, the genes of <em>ISWI1</em>&nbsp;and <em>ISWI2</em>&nbsp;would finally be expressed with the help of yeast two-hybrid system.
+
                </p>
+
                <div class="col-lg-4 picture">
+
                    <img src="img/1.jpg">
+
                </div>
+
 
             </div>
 
             </div>
        </div>
+
 
        <div class="row">
+
 
 +
 
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/9/9f/T--Tianjin--experiment7.png" height="350"></div>  
 +
<div class="col-xs-12 picture">
 +
                                    <p id="8">
 +
                                        Figure 3  fluorescence intensity of various fluorescence proteins<br>
 +
                                    </p>
 +
                                </div>
 +
 
 +
 
 +
 
 +
 
 +
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
                    With these processes all done, we eventually measured the growth curve and observed the shapes of cells which have been modified by use of the Flow cytometry to see if these modifications had periodic effect on the yeast.
+
 
 +
We excluded mOrange, ECFP and RFP and finally we chose Nanoluc, Fluc, EYFP and mCherry as our report genes to characterize our system. The reasons were that mOrange showed very low fluorescence intensity and it takes too long for RFP to degrade and we didn’t obtain right genes of ECFP. EYFP and mCherry were finally picked out, which showed higher fluorescence intensity.<br><br>
 +
 
 +
Except for the selection of reporter genes, these cassettes play a role <a href="https://2018.igem.org/Team:Tianjin/Measurement#M1">in other ways</a>. For example, it was used as a positive control group in measuring. And we measured the degradation curve of mCherry and EYFP, which did a favor for our analysis of the results on the one hand and added new experimental characterization data to part_BBaE2030 and part_BBaE2050 on the other hand.
 +
 
 +
                   
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 364: Line 461:
 
         <div class="row">
 
         <div class="row">
 
             <div class="col-xs-12 ">
 
             <div class="col-xs-12 ">
                 <div class="title title-normal">
+
                 <div class="title title-small">
                     <p>Outreach</p>
+
                     <p>Y2H report circuits construction</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
        </div>
 
        <div class="row">
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
                     Chromatin remodeling refers to that the molecular state of chromatin packaging, the histones in nucleosomes, and the corresponding DNA molecules will transform in the process of replication and recombination of gene expression.<br>
+
                     Due to the Y2H system, the promoter needs to have less leakage expression and respond sensitively to the proteins combination. After thorough search, we eventually found a mutant <i>Gal1 promoter</i>(<a href="http://parts.igem.org/Part:BBa_K2637059">BBa_K2637059</a>), which was designed to functionally reduce false positive conditions. Besides, we selected <i>Gal2 promoter</i>(<a href="http://parts.igem.org/Part:BBa_K2637009">BBa_K2637009</a>), which works independently in order to improve the accuracy.
                     This remodeling is mainly through two approaches. First, this could be attained by covalent histone modification of specific enzymes, just like histone acetyltransferase (HATs), deacetylase, methyltransferase, and kinase. Specifically, it refers to the addition or removal of various chemical elements on histones under the catalysis of a specific protein complex called a histone modification complex. These enzymatic modifications include acetylation, methylation, phosphorylation, and ubiquitination occurring primarily at the N-terminal tail of histones. Furthermore, these modifications exert effect on the binding affinity between histones and DNA, thereby loosening or tightening the concentrated DNA surrounding the histones. For example, methylation of specific lysine residues in H3 and H4 leads to DNA being further combined with histones which deters transcription factors from binding to genes inhibiting the expression of DNA. In contrast, histone acetylation relaxes chromatin and exposes DNA to bind to transcription factors, giving rise to increasing gene expression.<sup><a href="#re1">[1][2][3][4]</a></sup>
+
                <br><br>
 +
                     We were successfully cloning four kinds of plasmids carrying the genes of mCherry, EYFP, <em>NanoLuc</em>&nbsp;and <em>Fluc</em>&nbsp;respectively with the <em>Gal1 promoter</em> and the <em>ADH1T</em>&nbsp;terminator by harnessing the principles of yeast homologous recombination. And also other four kinds of plasmids with the <em>Gal2 promoter</em> resembled the above four types, to compare which promoter works better. Moreover, to avoid the appearance of false positive phenomena which are likely to happen in&nbsp;the yeast two-hybrid system, we constructed the plasmids in four genres, and every kind of plasmids contained two cassettes consisting of<em>&nbsp;Gal1 promoter</em> with varying fluorescent proteins and <em>Gal2 promoter</em> with different luciferases.&nbsp;Only when both reporter genes function normally can we ensure that the system succeeds. all circuits are constructed respectively on the plasmid pRS416 and the details can be found in the table4 below.&nbsp;<br><br>
 +
                    Ultimately, fluorescence spectrophotometer and multilabel reader&nbsp;were performed on our detecting process to analyze the expression of the fluorescent proteins and luciferases of the plasmid we constructed in the <em>Saccharomyces </em><em>cerevisia</em><em>e</em>&nbsp;respectively.<br>
 +
         
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
        </div>
+
 
        <div class="row">
+
 
 +
 
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/7/75/T--Tianjin--reporter_p1m.jpg" height="250"></div>  
 +
<div class="col-xs-12 picture">
 +
                                    <p id="8">
 +
                                      Figure 4 Example map of the reporter plasmids<br>
 +
                                    </p>
 +
                                </div>
 +
 
 +
 
 +
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                 <p>
+
                 <table class="table table-bordered">
                     Second, ATP-dependent chromatin remodeling complex could move, eject or reconstruct nucleosomes to achieve the aim of remodeling. These protein complexes share a common ATPase domain, which can relocate the position of the nucleosome on the DNA by utilizing the energy of ATP hydrolysis to keep the histone away from DNA or promote the exchange of histone variants, thereby producing nucleosome free the DNA region which will activate the expression of DNA. In addition, some remodeling complexes have DNA translocation activity and can perform specific remodeling tasks. Currently we konw that there are at least five chromatin remodeling families in eukaryotes: <em>SWI</em>&nbsp;/ <em>SNF</em>,<em>&nbsp;ISWI</em>,<em>&nbsp;NuRD</em>&nbsp;/<em>&nbsp;Mi-2</em>&nbsp;/ <em>CHD</em>, <em>INO80</em>&nbsp;and <em>SWR1</em>. Although all remodeling complexes share a common ATPase domain, their function is based on several specific biological processes, just like DNA repair, apoptosis, and so on. This is due to the fact that each remodeling complex has a unique protein domain in its catalytic ATPase region and also has different recruitment subunits.<sup><a href="#re5">[5][6]</a></sup>
+
                    <thead style="background: #222!important;color: white;">
                 </p>
+
                        <tr>
 +
                            <th colspan="3"><p>Table4 The structure of reporter plasmids</p></th>
 +
                        </tr>
 +
                        <tr>
 +
                            <th>name</th>
 +
                            <th>number</th>
 +
                            <th>cassette</th>
 +
                        </tr>
 +
                     </thead>
 +
                    <tbody>
 +
                        <tr><td><p>p1m</p></td><td><p>BBa_K2637036</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T</em></p></td></tr><tr><td><p>p1E</p></td><td><p>BBa_K2637037</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T</em></p></td></tr><tr><td><p>p1N</p></td><td><p>BBa_K2637038</p></td><td><p><em>G</em><em>al1p-NanoLuc-ADH1T</em></p></td></tr><tr><td><p>p1F</p></td><td><p>\</p></td><td><p><em>G</em><em>al1p-Fluc-ADH1T</em></p></td></tr><tr><td><p>p2m</p></td><td><p>BBa_K2637039</p></td><td><p><em>G</em><em>al2p-mCherry-ADH1T</em></p></td></tr><tr><td ><p>p2E</p></td><td ><p>BBa_K2637040</p></td><td><p><em>G</em><em>al2p-EYFP-ADH1T</em></p></td></tr><tr><td><p>p2N</p></td><td><p>BBa_K2637041</p></td><td><p><em>G</em><em>al2p-NanoLuc-ADH1T</em></p></td></tr><tr><td><p>p2F</p></td><td><p>\</p></td><td><p><em>G</em><em>al2p-Fluc-ADH1T</em></p></td></tr><tr><td><p>p1m2N</p></td><td><p>BBa_K2637042</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T-</em><em>&nbsp;G</em><em>al2p-NanoLuc-CYC1</em></p></td></tr><tr><td><p>p1E2N</p></td><td><p>BBa_K2637043</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T-</em><em>&nbsp;G</em><em>al2p-NanoLuc-CYC1</em></p></td></tr><tr><td><p>p1m2F</p></td><td ><p>\</p></td><td><p><em>G</em><em>al1p-mCherry-ADH1T-</em><em>&nbsp;G</em><em>al2p-Fluc-CYC1</em></p></td></tr><tr><td><p>p1E2F</p></td><td><p>\</p></td><td><p><em>G</em><em>al1p-EYFP-ADH1T-</em><em>&nbsp;G</em><em>al2p-Fluc-CYC1</em></p></td></tr>
 +
                    </tbody>
 +
                 </table>            
 
             </div>
 
             </div>
        </div>
 
        <div class="row">
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                 <p>
+
                 <p>At last, we get a number of different strains respectively containing a pair of selected recombinant plasmids and one reporter plasmid. (Table 5)</p>
                      Although there still remains some puzzles of the mechanism of the chromatin remodeling, a chunk of researches embodied that these two approaches indeed play a significant role in chromatin remodeling and altering the chromosome topology.<br>
+
                      Therefore, in our project, we selected two types of chromatin remodeling families: SWI / SNF and ISWI to substitute the reporter as the downstream proteins, since these two families have been well studied, especially in the yeast model.  
+
                </p>
+
 
             </div>
 
             </div>
        </div>
 
        <div class="row">
 
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                 <p>
+
                 <table class="table table-bordered">
                      Our<em>&nbsp;Saccharomyces cerevisiae </em>incorporated the heterogeneous KaiABC circadian clock from <em>cynaobacterium Synechococcus elongatus</em>.&nbsp;Once KaiC combined with SasA, the downstream genes initiate expressing by utilizing the yeast two- hybrid system. And due to the fact that the tightness of these two proteins&rsquo;&nbsp;combination will change over time, the amount of genes&rsquo;&nbsp;expression will alter accordingly. Since we substituted the genes of <em>SWI / SNF </em>and <em>ISWI</em>&nbsp;for the downstream genes, we could eventually measure the growth curve and observe the shapes of cells which have been modified by use of the Flow cytometry to find out if these modifications had periodic effect on the <em>Saccharomyces cerevisiae</em>.
+
                    <thead style="background: #222!important;color: white;">
                 </p>
+
                        <tr>
 +
                            <th colspan="2"><p>Table 5  Final Experimental Strains<br></p><p>(the strains are named after the plasmids that they contain)</p>
 +
                        </th>
 +
                           
 +
                        </tr>
 +
                        <tr>
 +
                            <th>Experimental group</th>
 +
                            <th>Control group</th>
 +
                        </tr>
 +
                    </thead>
 +
                    <tbody>
 +
                        <tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p1F</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1F</p></td></tr><tr><td width="288"><p>pbCiRS +p1F</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p2F</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2F</p></td></tr><tr><td width="288"><p>pbCiRS +p2F</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p1N</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1N</p></td></tr><tr><td width="288"><p>pbCiRS +p1N</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p2N</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2N</p></td></tr><tr><td width="288"><p>pbCiRS +p2N</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p1m</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1m</p></td></tr><tr><td width="288"><p>pbCiRS +p1m</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p2m</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2m</p></td></tr><tr><td width="288"><p>pbCiRS +p2m</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p1E</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1E</p></td></tr><tr><td width="288"><p>pbCiRS +p1E</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pbCiRS +p2E</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2E</p></td></tr><tr><td width="288"><p>pbCiRS +p2E</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p1F</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1F</p></td></tr><tr><td width="288"><p>pCiRbS +p1F</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p2F</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2F</p></td></tr><tr><td width="288"><p>pCiRbS +p2F</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p1N</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1N</p></td></tr><tr><td width="288"><p>pCiRbS +p1N</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p2N</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2N</p></td></tr><tr><td width="288"><p>pCiRbS +p2N</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p1m</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1m</p></td></tr><tr><td width="288"><p>pCiRbS +p1m</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p2m</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2m</p></td></tr><tr><td width="288"><p>pCiRbS +p2m</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p1E</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p1E</p></td></tr><tr><td width="288"><p>pCiRbS +p1E</p></td></tr><tr><td rowspan="2" width="226"><p>pABaC +pCiRbS +p2E</p><p>&nbsp;</p></td><td width="288"><p>pABaC +&nbsp;p2E</p></td></tr><tr><td width="288"><p>pCiRbS +p2E</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS +&nbsp;p1N</p><p>&nbsp;</p></td><td width="288"><p>pbCRCi +p1N</p></td></tr><tr><td width="288"><p>paBAS +&nbsp;p1N</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS +&nbsp;p1F</p><p>&nbsp;</p></td><td width="288"><p>pbCRCi&nbsp;+p1F</p></td></tr><tr><td width="288"><p>paBAS +&nbsp;p1F</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS +&nbsp;p1E</p></td><td width="288"><p>pbCRCi+&nbsp;p1E</p></td></tr><tr><td width="288"><p>paBAS +&nbsp;p1E</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS +&nbsp;p1m</p></td><td width="288"><p>pbCRCi&nbsp;+p1m</p></td></tr><tr><td width="288"><p>paBAS +&nbsp;p1m</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS +&nbsp;p2N</p></td><td width="288"><p>pbCRCi&nbsp;+p2N</p></td></tr><tr><td width="288"><p>paBAS +&nbsp;p2N</p></td></tr><tr><td rowspan="2" width="226"><p>pbCRCi + paBAS + p2F</p></td><td width="288"><p>pbCRCi +p2F</p></td></tr><tr><td width="288"><p>paBAS + p2F</p></td></tr>
 +
                    </tbody>  
 +
                 </table>            
 
             </div>
 
             </div>
 
         </div>
 
         </div>
 +
        <div class="row partition"></div>
 
         <div class="row">
 
         <div class="row">
 
             <div class="col-xs-12">
 
             <div class="col-xs-12">
 
                 <div class="title title-normal">
 
                 <div class="title title-normal">
                     <p>The cell factory with KaiABC circadian clock system</p>
+
                     <p>Novel application</p>
 
                 </div>
 
                 </div>
 
             </div>
 
             </div>
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
                 <p>
+
                 <p><br>
                       Our&nbsp;<em>S.</em><em>&nbsp;</em><em>cerevisiae</em>,&nbsp;which incorporates heterogeneous KaiABC circadian clock system&nbsp;from&nbsp;<em>cyanobacterium</em><em>&nbsp;</em><em>Synechococcus elongatus</em>,&nbsp;can be used to construct microbial consortium with two yeasts, making it possible to produce different products in subjective days and nights.
+
                       Our&nbsp;<em>S.</em><em>&nbsp;</em><em>cerevisiae</em>,&nbsp;which incorporates heterogeneous KaiABC circadian clock system&nbsp;from&nbsp;cyanobacterium<em>&nbsp;</em><em>Synechococcus elongatus</em>,&nbsp;can be used to construct microbial consortium with two yeasts, making it possible to produce different products in subjective days and nights.
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 414: Line 541:
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
                    In detail, one of the <em>S.</em><em>&nbsp;</em><em>cerevisiae</em>&nbsp;combining KaiC with SasA at subjective dawn is able to initiate the expression of downstream target gene,&nbsp;which can translate into a kind of product with a refreshing effect, such as caffeine.&nbsp;In&nbsp;another&nbsp;<em>S.</em><em>&nbsp;</em><em>cerevisiae</em>, KaiC is bound to CikA or KaiB at &nbsp;subjective dusk to generate the expression of another downstream gene,&nbsp;whose&nbsp;translational products&nbsp;can&nbsp;function&nbsp;as sleep-enhancing supplements or mosquito repellent, such as melatonin and limonene. &nbsp;In this way, the KaiABC circadian clock system can be used as a cell factory that alternately&nbsp;and periodically produces two different substances between day and night.  
+
                  In our <a href="https://2018.igem.org/Team:Tianjin/Human_Practices">human practice</a>, the survey inspired us the idea. We collected the data, sought help from experts, made market analysis to select the proper products. In detail, one of the <em>S.</em><em>&nbsp;</em><em>cerevisiae</em>&nbsp;combining KaiC with SasA at subjective dawn is able to initiate the expression of downstream target gene,&nbsp;which can translate into a kind of product with a refreshing effect, such as caffeine.&nbsp;In&nbsp;another&nbsp;<em>S.</em><em>&nbsp;</em><em>cerevisiae</em>, KaiC is bound to CikA or KaiB at &nbsp;subjective dusk to generate the expression of another downstream gene,&nbsp;whose&nbsp;translational products&nbsp;can&nbsp;function&nbsp;as sleep-enhancing supplements or mosquito repellent, such as melatonin (we eliminated it later for unsatisfactory effect) and limonene. &nbsp;In this way, the KaiABC circadian clock system can be used as a cell factory that alternately&nbsp;and periodically produces two different substances between day and night.  
 
                 </p>
 
                 </p>
 
             </div>
 
             </div>
Line 428: Line 555:
 
             <div class="col-lg-10 picture">
 
             <div class="col-lg-10 picture">
 
                 <img src="https://static.igem.org/mediawiki/2018/7/77/T--Tianjin--Experiment5.1.png">
 
                 <img src="https://static.igem.org/mediawiki/2018/7/77/T--Tianjin--Experiment5.1.png">
 +
                <p id="8">Figure 5  The schematic diagram of our cell factory</p>
 
             </div>
 
             </div>
 
             <div class="col-lg-1 picture">
 
             <div class="col-lg-1 picture">
Line 440: Line 568:
 
             <div class="col-xs-12 text">
 
             <div class="col-xs-12 text">
 
                 <p>
 
                 <p>
 +
                    We got the three genes controlling caffeine production (BBa_K801070, BBa_K801071 and BBa_K801072) from the work of <a href="https://2012.igem.org/Team:TU_Munich">Technical University of Munich in 2012</a>. Unfortunately, the caffeine genes provided in kits showed unclear problems, deterring us from making this idea into reality. By PCR we found it seems not to contain the right sequence. As we can see in the gel photo below, three 1200bp-long sequences are shorter than supposed.
 +
<br><br>
 +
<div align="center"><img src="https://static.igem.org/mediawiki/2018/f/fb/T--Tianjin--caffeine.jpg" height="450"></div>
 +
 +
               
 +
 +
<br><br>
 
                     However, we have successfully assembled&nbsp;gene expression cassettes of limonene&nbsp;synthase&nbsp;onto the pRS416&nbsp;plasmid named pGLA, and transformed pGLA into the&nbsp;<em>S. cerevisiae</em>&nbsp;we have constructed with the KaiABC system&nbsp;to form the limonene cell factory. The newly-built cell factory working with the&nbsp;KaiABC circadian clock systemhas achieved to&nbsp;periodically produce limonene during subjective nights only to help repel mosquitoes. We have constructed a biobrick(BBa_K2637044) encoding limonene sythase expression cassette, which was verifed via SDS-PAGE to tiral its function. You can see the results from <a href= "http://parts.igem.org/Part:BBa_K2637044">here</a>.
 
                     However, we have successfully assembled&nbsp;gene expression cassettes of limonene&nbsp;synthase&nbsp;onto the pRS416&nbsp;plasmid named pGLA, and transformed pGLA into the&nbsp;<em>S. cerevisiae</em>&nbsp;we have constructed with the KaiABC system&nbsp;to form the limonene cell factory. The newly-built cell factory working with the&nbsp;KaiABC circadian clock systemhas achieved to&nbsp;periodically produce limonene during subjective nights only to help repel mosquitoes. We have constructed a biobrick(BBa_K2637044) encoding limonene sythase expression cassette, which was verifed via SDS-PAGE to tiral its function. You can see the results from <a href= "http://parts.igem.org/Part:BBa_K2637044">here</a>.
 
                 </p>
 
                 </p>
Line 457: Line 592:
 
                     <h1>References</h1>
 
                     <h1>References</h1>
 
                     <p class="reftext" id="re1">
 
                     <p class="reftext" id="re1">
                         <a>[1]: Wang GG, Allis CD, Chi P (September 2007). "Chromatin remodeling and cancer, Part I: Covalent histone modifications". Trends in Molecular Medicine. 13 (9): 363–72. (2007)</a>
+
                         <a>[1] Nakajima M, Imai K, et al. Reconstitution of Circadian Oscillation of Cyanobacterial KaiC Phosphorylation in Vitro. [J]Science, 2005,308(5720):414-415</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re2">
 
                     <p class="reftext" id="re2">
                         <a>[2]: Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K (May 2007). "High-resolution profiling of histone methylations in the human genome". Cell. 129 (4): 823–37.(2007)</a>
+
                         <a>[2] Kageyama H, Nishiwaki T ,et al. Cyanobacterial Circadian Pacemaker: Kai Protein Complex Dynamics in the KaiC Phosphorylation Cycle In Vitro. [J]Molecular Cell, 2006, 23(2):161-171</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re3">
 
                     <p class="reftext" id="re3">
                         <a>[3]: Steger DJ, Lefterova MI, Ying L, Stonestrom AJ, Schupp M, Zhuo D, Vakoc AL, Kim JE, Chen J, Lazar MA, Blobel GA, Vakoc CR (April 2008). "DOT1L/KMT4 recruitment and H3K79 methylation are ubiquitously coupled with gene transcription in mammalian cells". Molecular and Cellular Biology. 28 (8): 2825–39.(2008)</a>
+
                         <a>[3]Zwicker D, Lubensky DK, ten Wolde. PR Robust circadian clocks from coupled protein-modification and transcription–translation cycles. [J]Proceedings of the national Academy of Sciences of the United States of America , 2010, 107(52):22540-22545</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re4">
 
                     <p class="reftext" id="re4">
                         <a>[4]: Koch CM, Andrews RM, Flicek P, Dillon SC, Karaöz U, Clelland GK, Wilcox S, Beare DM, Fowler JC, Couttet P, James KD, Lefebvre GC, Bruce AW, Dovey OM, Ellis PD, Dhami P, Langford CF, Weng Z, Birney E, Carter NP, Vetrie D, Dunham I (June 2007). "The landscape of histone modifications across 1% of the human genome in five human cell lines". Genome Research. 17 (6): 691–707.(2007)</a>
+
                         <a>[4] Jie Sun, Zengyi Shao, Hua Zhao, Nikhil Nair, et al. Cloning and Characterization of a Panel of Constitutive Promoters for Applications in Pathway Engineering in Saccharomyces cerevisiae. [J]Biotechnology and Bioengineering, 2012, 109: 2082–2092.</a>
                        <br>
+
                    </p>
+
                    <p class="reftext" id="re5">
+
                        <a>[5]: Wang GG, Allis CD, Chi P (September 2007). "Chromatin remodeling and cancer, Part II: ATP-dependent chromatin remodeling". Trends in Molecular Medicine. 13 (9): 373–80. (2007)</a>
+
                        <br>
+
                    </p>
+
                    <p class="reftext" id="re5">
+
                        <a>[6]: Saha A, Wittmeyer J, Cairns BR (June 2006). "Chromatin remodelling: the industrial revolution of DNA around histones". Nature Reviews Molecular Cell Biology. 7 (6): 437–47.(2006)</a>
+
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>

Latest revision as of 13:01, 6 December 2018

<!DOCTYPE html> Team:Tianjin - 2018.igem.org

EXPERIMENTS

Reconstruction of the KaiABC system

Promoter selection

In the cyanobacterium Synechococcus elongatus(PCC 7942), three genes (kaiA, kaiB, and kaiC) are essential components of the circadian clock, whose concentration ratio is also important. According to previous studies, the concentration ratio of these three core proteins, KaiA, KaiB and KaiC, is 1:1:4 (by weight).

Researchers has incubated KaiC with KaiA and KaiB in vitro at a ratio similar to that measured in vivo in the presence of 1 mM ATP. As a result, KaiC phosphorylation has robustly oscillated for at least three cycles without damping. But the amplitude of this in vitro was smaller than that observed in vivo under continuous light conditions.

More specifically, the change in concentration of these three kind of  proteins could exert a complex impact on the KaiABC circadian clock system, or in other words, the circadian oscillation of KaiC phosphorylation. For example, in cyanobacteria, KaiC represses its own (kaiBC) expression, whereas KaiA enhances the expression of kaiBC. Therefore, KaiC and KaiA could be, respectively, regarded as negative and positive factors functioning in circadian feedback regulation of kaiBC expression.

Besides, sufficient and appropriate protein concentrations is necessary for Kai protein interactions and KaiC phosphorylation. To take an example, several researchers have already explored the effect of Kai protein concentration on the rhythm of KaiC phosphorylation. In experiment, the standard mixture (×1 solution) was consisted of 1.2 μM KaiA, 3.5 μM KaiB, and 3.5 μM KaiC. When the proteins were at 2.5× or 5× protein concentrations, the KaiC phosphorylation rhythms were nearly the same as those measured under standard conditions. While lowering the protein concentration to 1/10 of the standard mixture, the amplitude of the KaiC phosphorylation rhythm was reduced and the period of the rhythm was prolonged. What’s more, at 1/20 or 1/40 of the standard concentrations, KaiC would be remained dephosphorylated. In addition, in the case of a decrease of the relative concentrations of KaiA or KaiB to KaiC, the rhythm could change accordingly. While lowering either KaiA or KaiB concentrations to one-fourth or one-third of the standard mixture abolished cycling, the rhythm was still maintained in the presence of a two-thirds concentration of either KaiA or KaiB. However, the period is extended by lowering KaiA concentrations to two-thirds, while lowering the KaiB concentration to two-thirds of the standard couldn’t alter the rhythm.

Owing to a series of reasons like the lack of a complete transcriptional/translational feedback loop(TTFL), the KaiABC system, reconstituted in yeast cells, can not express the correct protein concentrations as in cyanobacteria. Therefore, we intend to get a good command of protein concentrations by selecting promoters of different intensity to construct the corresponding expression cassettes, thus the KaiABC system works better and more stably. Besides, we measure our promoter strength of six core genes convenient for the analysis of the final results.

Based on the research measuring the promoter strength of 14 constitutive promoters by GFP fluorescence intensity[4], we designed our experiment about the measurement of the promoters by constructing mCherry cassette with different promoters to measure the fluorescence intensity of mCherry, representing the promoter strength. Before our experiment, we selected three common promoters which are TDH3 promoter, PGK1 promoter and TEF1 promoter according the data of the paper as our promoters of six core genes. The detailed information of plasmids we constructed were shown on the table 1 below. We assembled our plasmids by yeast homologous recombination. Taking TEF1P-mCherry-TEF1Tcassette for example, we obtained fragments TEF1P, mCherry and TEF1Twith homologous arms by PCR and then we transformed three fragments and linearized vector pRS415 which had been digested by enzymes HindⅢ and NotΙ  into Saccharomyces cerevisiae to do yeast homologous recombination. Through the screening of nutrition label and the verification of PCR, we got the right strains and did further measurement.

Table 1 Structure of Recombinant Plasmids

Table 1 Plasmids constructed for the measurement of the promoter strength

plasmids

cassette

pTEmCTE

TEF1P-mCherry-TEF1T

pPGmCPG

PGK1P-mCherry-PGK1T

pTDmCAD

TDH3P-mCherry-ADH1T

Notes for table 1:TEF1P, TEF1T, PGK1P, PGK1T, TDH3P and ADH1T represent TEF1 promoter, TEF1 terminator, PGK1 promoter, PGK1 terminator, TDH3 promoter and ADH1 terminator.

In our experiment, we only measured the promoters we have selected before. Our results were as follows.

Figure 1 the promoter strength characterized by mCherry

What’s more, we constructed  three combinations with two kinds of promoter-gene combinations to character different forms of oscillation. As is shown in the Figure 1, we increased the relative concentration of KaiA protein greatly and decreased the relative concentration of KaiB protein slightly in KaiC-SasA and KaiC-CikA combinations, which shortened the period of the circadian oscillation . In our KaiB-KaiC combination, we increased the relative concentration of KaiA protein greatly.

Plasmids assembly

Our aim is to reconstruct the KaiABC circadian clock system of prokaryotic cyanobacteria in nonciracdian eukaryotic Saccharomyces cerevisiae. First of all, we hope to introduce the core proteins of cyanobacterial circadian clock, KaiA, KaiB and KaiC, into yeast to make them oscillate stably. To prevent KaiC from being trapped in phosphorylation state, we select three auxiliary proteins: SasA, CikA and RpaA. The promoter of prokaryotes can not be directly recognized by yeast, so we abandon the way of using the relevant promoters of the RpaA-mediated downstream reaction which are inherent in cyanobacterial, instead use the yeast two-hybrid system to characterize the KaiABC circadian clock system.

We selected three pairs of periodically binding proteins, KaiC-SasA, KaiC-CikA, and KaiB-KaiC, as the "prey" and "bait" of the yeast two-hybrid system, respectively, to construct fusion proteins with activation domain(AD) or DNA binding domain(BD) of Gal4 protein. Taking for example the KaiC-SasA couple, we assembled three gene expression cassettes of KaiA, KaiB, and AD-KaiC onto the pRS413 plasmid named pABaC, and assembled other three gene expression cassettes of CikA, RpaA and BD-SasA onto the pRS415 plasmid named pCiRbS. Other plasmids involved were pbCiRS (the recombinant pRS415 containing cassettes of BD-CikA, RpaA, SasA), pbCRCi (the recombinant pRS413 containing cassettes of BD-KaiC, RpaA, CikA), paBAS (the recombinant pRS415 containing cassettes of AD-KaiB, KaiA, SasA). When the two plasmids are successfully expressed in yeast, that is to say, when the KaiABC circadian clock system successfully operates, KaiA binds to the CII subunit of KaiC during the subjective daytime, stimulating the autokinase activity of the CII subunit, resulting in the phosphorylation of CII subunit. Residues Ser431 and Thr432 are phosphorylated in turn, during which SasA binds to phosphorylated KaiC, allowing AD and BD to be spatially close enough to activate the promoters Gal1 promoter, Gal2 promoter that regulate downstream genes. When KaiC phosphorylation is complete, the KaiC protein undergoes loop stacking, which causes the binding site of KaiA to be blocked and the binding site of KaiB to be exposed. At the same time, KaiA detaches from KaiC, and KaiB binds to KaiC, stimulating its dephosphorylation. KaiB has a competitive relationship with SasA, which means that SasA falls off from KaiC, causing AD and BD to move away from each other and the related downstream genes not to be started.

In the experiment, we have used the restriction enzyme ligation method, Gibson assembly method and yeast homologous recombination method successively to construct the plasmids mentioned before. Since the experimental results showed that the first two methods were somewhat less efficient than the third one, we finally used the yeast homologous recombination method for plasmids assembly. (Table 1) Taking KaiC-SasA couple as an example, we first used PCR to add corresponding homology arms to the ends of ten gene fragments including TEF1P (the promoter of TEF1, kaiA, TEF1T(the terminator of TEF1), PGK1P (the promoter of PGK1), kaiB, PGK1T (the terminator of PGK1), TDH3P (the promoter of TDH3), AD, kaiC and ADH1T(the terminator of ADH1, then we introduced the ten gene fragments into the yeast together with the pRS413 plasmid cut by EcoRI and NotI to construct three gene expression cassettes of KaiA(TEF1P-kaiA-TEF1T), KaiB(PGK1P-kaiB-PGK1T), AD-KaiC(TDH3P-AD-kaiC-ADH1T. The right strains containing the recombinant plasmid were screened by nutrition labeling, verified by PCR tag and then the recombinant plasmid was amplified in Escherichia Coli to obtain a large amount. Similarly, a sufficient number of recombinant pRS415 plasmids were obtained using the same way. Finally, we transformed the two kinds of plasmids into the final chassis cell, Saccharomyces cerevisiae BY4741, to complete the construction of the KaiABC system.

Table 2 Structure of Recombinant Plasmids
pABaC
(pRS413)
KaiA   cassette KaiB  cassette AD-KaiC  cassette
TEF1P kaiA TEFIT PGK1P KaiB PGK1T TDH3P AD kaic ADH1T
pCiRbS
(pRS415)
CikA cassette RpaA cassette BD-SasA cassette
TEF1P cikA TEFIT PGK1P KaiB PGK1T TDH3P BD sasA ADH1T
pbCiRS
(pRS415)
BD-CikA cassette RpaA cassette SasA cassette
TEF1P BD cikA TEF1T PGK1P rpaA PGK1T TDH3p sasA ADH1T
pbCRCi
(pRS413)
BD-KaiC cassette RpaA cassette CikA cassette
TDH3P BD kaiC ADH1T PGK1P rpaA PGK1T TEF1P cikA TEF1T
paBAS
(pRS415)
AD-KaiB cassette KaiA cassette SasA cassette
TDH3P AD kaiB ADH1T PGK1P kaiA PGK1T TEF1P sasA TEF1T

Figure 2 Map of the five plasmids

Construction of the reporter circuits

Reporter genes selection

To characterize the viability of our circadian clock, we required special report genes that functions sensitively in Saccharomyces cerevisiae. There are many report genes available but not everyone is suitable. We looked up papers and websites, screening massively. Our modeling group facilitated us to rate the fluorescent proteins fitted for our project most. They set up an Evaluation Model, which takes issues like lifetime, quantity yield(QY) and strokes into account to select the suitable fluorescent proteins among millions of alternatives.

Besides, Prof. Li recommended luciferase for us. The functional enzyme is created immediately upon translation and the assay is rapid, reliable and easy to perform with ATP, oxygen, and luciferin as substrates. It possesses a number of physical properties that make it an excellent reporter protein: small, monomeric enzyme, high thermal stability and so on.

we primarily chose Fluc, NanoLuc(BBa_K1680009), EYFP(BBa_E2030), mCherry(BBa_E2060), mOrange, and ECFP(BBa_I13602) as alternatives. Then verification experiments were operated by linking report genes above with constitutive promoter TDH3 promoter and measured the fluorescence intensity.
Taking TDH3P-mCherry-ADH1T cassette for example, we obtained fragments TDH3P,mCherry and ADH1T with homologous arms by PCR and then we transformed three fragments and linearized vector pRS413 which had been digested by enzymes BamHΙ and Not Ι into Saccharomyces cerevisiae to do yeast homologous recombination.Through the screening of nutrition label and the verification of PCR, we got the right strains for further measurement.
The detailed information were shown on the table2 below.

Table 3. Plasmids constructed for the measurement of various fluorescent proteins and luciferases
plasmids cassette

pTDmCAD

TDH3P-mCherry-ADH1T

pTDmOAD

TDH3P-mOrange-ADH1T

pTDEYAD

TDH3P-EYFP-ADH1T

pTDECAD

TDH3P-ECFP-ADH1T

pTDRAD

TDH3P-RFP-ADH1T

pTDFAD

TDH3P-Fluc-ADH1T

pTDNAD

TDH3P-Nanoluc-ADH1T

Part of our results is shown on the figure below.

Figure 3 fluorescence intensity of various fluorescence proteins

We excluded mOrange, ECFP and RFP and finally we chose Nanoluc, Fluc, EYFP and mCherry as our report genes to characterize our system. The reasons were that mOrange showed very low fluorescence intensity and it takes too long for RFP to degrade and we didn’t obtain right genes of ECFP. EYFP and mCherry were finally picked out, which showed higher fluorescence intensity.

Except for the selection of reporter genes, these cassettes play a role in other ways. For example, it was used as a positive control group in measuring. And we measured the degradation curve of mCherry and EYFP, which did a favor for our analysis of the results on the one hand and added new experimental characterization data to part_BBaE2030 and part_BBaE2050 on the other hand.

Y2H report circuits construction

Due to the Y2H system, the promoter needs to have less leakage expression and respond sensitively to the proteins combination. After thorough search, we eventually found a mutant Gal1 promoter(BBa_K2637059), which was designed to functionally reduce false positive conditions. Besides, we selected Gal2 promoter(BBa_K2637009), which works independently in order to improve the accuracy.

We were successfully cloning four kinds of plasmids carrying the genes of mCherry, EYFP, NanoLuc and Fluc respectively with the Gal1 promoter and the ADH1T terminator by harnessing the principles of yeast homologous recombination. And also other four kinds of plasmids with the Gal2 promoter resembled the above four types, to compare which promoter works better. Moreover, to avoid the appearance of false positive phenomena which are likely to happen in the yeast two-hybrid system, we constructed the plasmids in four genres, and every kind of plasmids contained two cassettes consisting of Gal1 promoter with varying fluorescent proteins and Gal2 promoter with different luciferases. Only when both reporter genes function normally can we ensure that the system succeeds. all circuits are constructed respectively on the plasmid pRS416 and the details can be found in the table4 below. 

Ultimately, fluorescence spectrophotometer and multilabel reader were performed on our detecting process to analyze the expression of the fluorescent proteins and luciferases of the plasmid we constructed in the Saccharomyces cerevisiae respectively.

Figure 4 Example map of the reporter plasmids

Table4 The structure of reporter plasmids

name number cassette

p1m

BBa_K2637036

Gal1p-mCherry-ADH1T

p1E

BBa_K2637037

Gal1p-EYFP-ADH1T

p1N

BBa_K2637038

Gal1p-NanoLuc-ADH1T

p1F

\

Gal1p-Fluc-ADH1T

p2m

BBa_K2637039

Gal2p-mCherry-ADH1T

p2E

BBa_K2637040

Gal2p-EYFP-ADH1T

p2N

BBa_K2637041

Gal2p-NanoLuc-ADH1T

p2F

\

Gal2p-Fluc-ADH1T

p1m2N

BBa_K2637042

Gal1p-mCherry-ADH1T- Gal2p-NanoLuc-CYC1

p1E2N

BBa_K2637043

Gal1p-EYFP-ADH1T- Gal2p-NanoLuc-CYC1

p1m2F

\

Gal1p-mCherry-ADH1T- Gal2p-Fluc-CYC1

p1E2F

\

Gal1p-EYFP-ADH1T- Gal2p-Fluc-CYC1

At last, we get a number of different strains respectively containing a pair of selected recombinant plasmids and one reporter plasmid. (Table 5)

Table 5 Final Experimental Strains

(the strains are named after the plasmids that they contain)

Experimental group Control group

pABaC +pbCiRS +p1F

 

pABaC + p1F

pbCiRS +p1F

pABaC +pbCiRS +p2F

 

pABaC + p2F

pbCiRS +p2F

pABaC +pbCiRS +p1N

 

pABaC + p1N

pbCiRS +p1N

pABaC +pbCiRS +p2N

 

pABaC + p2N

pbCiRS +p2N

pABaC +pbCiRS +p1m

 

pABaC + p1m

pbCiRS +p1m

pABaC +pbCiRS +p2m

 

pABaC + p2m

pbCiRS +p2m

pABaC +pbCiRS +p1E

 

pABaC + p1E

pbCiRS +p1E

pABaC +pbCiRS +p2E

 

pABaC + p2E

pbCiRS +p2E

pABaC +pCiRbS +p1F

 

pABaC + p1F

pCiRbS +p1F

pABaC +pCiRbS +p2F

 

pABaC + p2F

pCiRbS +p2F

pABaC +pCiRbS +p1N

 

pABaC + p1N

pCiRbS +p1N

pABaC +pCiRbS +p2N

 

pABaC + p2N

pCiRbS +p2N

pABaC +pCiRbS +p1m

 

pABaC + p1m

pCiRbS +p1m

pABaC +pCiRbS +p2m

 

pABaC + p2m

pCiRbS +p2m

pABaC +pCiRbS +p1E

 

pABaC + p1E

pCiRbS +p1E

pABaC +pCiRbS +p2E

 

pABaC + p2E

pCiRbS +p2E

pbCRCi + paBAS + p1N

 

pbCRCi +p1N

paBAS + p1N

pbCRCi + paBAS + p1F

 

pbCRCi +p1F

paBAS + p1F

pbCRCi + paBAS + p1E

pbCRCi+ p1E

paBAS + p1E

pbCRCi + paBAS + p1m

pbCRCi +p1m

paBAS + p1m

pbCRCi + paBAS + p2N

pbCRCi +p2N

paBAS + p2N

pbCRCi + paBAS + p2F

pbCRCi +p2F

paBAS + p2F

Novel application


Our S. cerevisiae, which incorporates heterogeneous KaiABC circadian clock system from cyanobacterium Synechococcus elongatus, can be used to construct microbial consortium with two yeasts, making it possible to produce different products in subjective days and nights.

In our human practice, the survey inspired us the idea. We collected the data, sought help from experts, made market analysis to select the proper products. In detail, one of the S. cerevisiae combining KaiC with SasA at subjective dawn is able to initiate the expression of downstream target gene, which can translate into a kind of product with a refreshing effect, such as caffeine. In another S. cerevisiae, KaiC is bound to CikA or KaiB at  subjective dusk to generate the expression of another downstream gene, whose translational products can function as sleep-enhancing supplements or mosquito repellent, such as melatonin (we eliminated it later for unsatisfactory effect) and limonene.  In this way, the KaiABC circadian clock system can be used as a cell factory that alternately and periodically produces two different substances between day and night.

Our cell factory will serve as a platform for a variety of biotechnological applications, by varying the downstream target genes to achieve different functions, such as treatment of circadian rhythm disorders, automatic daily drug delivery, etc. To take an example, as we all know, intestinal microbes have a significant impact on human health such as immunity, emotions, and the body's own biological clock. Therefore, perhaps for the foreseeable future, we can introduce the KaiABC oscillation system or its evolution into a specific kind of intestinal microbes to synthesize and secrete certain chemical substances or biologically active molecules to achieve better regulation of the environment in the human body.

Figure 5 The schematic diagram of our cell factory

Based on this idea, we conducted experimental exploration of caffeine and limonene using the parts provided by iGEM. Caffeine is a xanthine alkaloid compound, a central nervous stimulant that temporarily dispels drowsiness and restores energy, is used clinically to treat neurasthenia and coma. It is also widely used as an additive for a variety of functional refreshing beverages. Limonene is a volatile monoterpenoid compound and produces a lemon-like odor with the effect of repelling mosquitoes. Besides, limonene could inhibits rat mammary gland and other Tumor development, d-limonene has also been used clinically to dissolve cholesterol-containing gallstones. Owing to the benefits mentioned above, inhaling limonene may also have positive influence on our health, with the potentials to prevent cancer and dissolve gallstones. We originally hoped to construct a caffeine-limonenoe cell factory. Unfortunately, the caffeine gene provided in parts showed unclear problems, deterring us from making this idea into reality.

We got the three genes controlling caffeine production (BBa_K801070, BBa_K801071 and BBa_K801072) from the work of Technical University of Munich in 2012. Unfortunately, the caffeine genes provided in kits showed unclear problems, deterring us from making this idea into reality. By PCR we found it seems not to contain the right sequence. As we can see in the gel photo below, three 1200bp-long sequences are shorter than supposed.



However, we have successfully assembled gene expression cassettes of limonene synthase onto the pRS416 plasmid named pGLA, and transformed pGLA into the S. cerevisiae we have constructed with the KaiABC system to form the limonene cell factory. The newly-built cell factory working with the KaiABC circadian clock systemhas achieved to periodically produce limonene during subjective nights only to help repel mosquitoes. We have constructed a biobrick(BBa_K2637044) encoding limonene sythase expression cassette, which was verifed via SDS-PAGE to tiral its function. You can see the results from here.

Overall, our cell factory proves to be an novel application for Kai ABC circadian clock system and other similar oscillators. We also hope that our work could provide inspirations for both researchers and companies from food, pharmaceutical or other relevant industries. And we would be extremely honored if anyone could transform our design into reality completely in the future.