Difference between revisions of "Team:Tianjin/Model"

 
(135 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 
{{Tianjin}}
 
{{Tianjin}}
 +
<!DOCTYPE html>
 
<html>
 
<html>
 +
<head>
 +
    <script src="https://2018.igem.org/Team:Tianjin/js/jquery?action=raw&ctype=text/javascript"></script>
 +
        <meta charset="utf-8">
 +
        <meta http-equiv="X-UA-Compatible" content="IE=Edge,chrome=1"/>
 +
        <meta content="width=device-width,initial-scale=1.0,maximum-scale=1.0,user-scalable=0;" name="viewport">
 +
        <meta name="format-detection" content="telephone=no">
 +
        <meta name="renderer" content="webkit">
 +
        <meta name="format-detection" content="telephone=no">
 +
        <meta name="author" content="773715181 Jiaxiao Han">
 +
        <meta content="2018iGEM Team:Tianjin Kai System to control biological clock" name="description">
 +
        <meta content="Team:Tianjin,iGEM:Tianjin,iGEM,2018iGEM" name="keywords">
 +
        <meta content="biological clock,clock,Kai,Kai A,Kai B,KaiC" name="keywords">
 +
    <title>Team:Tianjin - 2018.igem.org</title>
 +
        <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/bootstrap?action=raw&ctype=text/css">
 +
        <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/base?action=raw&ctype=text/css">
 +
        <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/font-awesome?action=raw&ctype=text/css">
 +
        <link rel="stylesheet" type="text/css" href="https://2018.igem.org/Team:Tianjin/css/text?action=raw&ctype=text/css">
 +
        <script src="https://2018.igem.org/Team:Tianjin/js/bootstrap?action=raw&ctype=text/javascript"></script>
 +
        <style type="text/css">
 +
        .MathJax_Display{
 +
            font-size: 22px;
 +
        }
 +
        .MathJax nobr>span.math>span{border-left-width:0 !important};
 +
        @media(max-width:767px){
 +
            .MathJax_Display{
 +
              font-size: 11px;
 +
            }
 +
        }
 +
        table.table.table-bordered.table-bashed tr:nth-child(3n+2){
 +
            border-bottom: 2px dashed #ddd;
 +
        }
 +
        body{
 +
            font-family:'font2',sans-serif!important;
 +
        }
 +
    </style>
 +
</head>
 +
<!-- delete.css  -->
 +
<style>
 +
#globalWrapper,#content{background-color:transparent;border:0;border-bottom:0;float:none;margin:0;padding:0;width:100%;list-style-image:none}#top_title{margin:0}#HQ_page th{background-color:transparent;padding:0;color:black;border:0;border-collapse:collapse;vertical-align:text-top;text-transform:uppercase;text-align:center}#HQ_page td{padding:0;border:0;vertical-align:text-top;text-align:center;line-height:35px}#HQ_page .jumbotron p{text-align:center;margin-bottom:15px;font-weight:200}#HQ_page p{text-align:center}body{margin-bottom:-10px}#top_title,#sideMenu{display:none}a:hover{text-decoration:none}.mw-content-ltr ul{padding-top:0;padding-right:0;margin:auto}body{margin-top:0}#wrapper{padding-left:0}#page-wrapper{width:100%;padding:0}.intro{background-size:cover;width:100%;position:relative}.huge{font-size:50px;line-height:normal}
 +
</style>
  
 +
<style>
 +
#top_title{display:none;}
 +
.igem_2018_team_menu{display:none !important;}
 +
</style>
  
 +
<script>
 +
$('#top_title').remove();$("#globalWrapper").removeAttr("id");$("#content").removeAttr("id");$("#HQ_page").removeAttr("id");$('.mw-body').removeClass('mw-body');$('.igem_2018_team_mobile_bar').remove();
 +
$('#bodyContent').removeAttr("id");
 +
$('#mw-content-text').removeAttr("id");
 +
$('.mw-content-ltr').removeAttr("class");
 +
$('.igem_2018_team_menu displaying_menu').remove();
 +
$('.igem_2018_team_content').removeAttr("class");
 +
$('.igem_2018_team_column_wrapper').removeAttr("class");
 +
$('.igem_2018_team_menu').remove();
 +
</script>
 +
</head>
 +
<body>
 +
    <nav class="navbar navbar-default navbar-fixed-top" role="navigation" style="background-color:#79acdd;margin-top:14px;">
 +
    <div class="container-fluid">
 +
        <button type="button" class="navbar-toggle collapsed" data-toggle="collapse" data-target=".navbar-main-collapse">
 +
            <i class="fa fa-bars"></i>
 +
        </button>
 +
    <div class="navbar-header">
 +
        <div class="navbar-brand" href="https://2018.igem.org/Team:Tianjin">
 +
            <a href="https://2018.igem.org/Team:Tianjin">
 +
            <div class="circle" style="background-image:url(https://static.igem.org/mediawiki/2018/4/45/T--Tianjin--logo.png);left: 50px;">
 +
            </div>
 +
            </a>
 +
        </div>
 +
    </div>
 +
        <div class="navbar-collapse navbar-right navbar-main-collapse collapse">
 +
        <ul class="nav navbar-nav navbar-right" style="margin: 15px;">
 +
            <li class="dropdown">
 +
                <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                    PROJECT
 +
                    <b class="caret"></b>
 +
                </a>
 +
                <ul class="dropdown-menu" style="left: -14px;">
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Description">BACKGROUND</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Design">DESIGN</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Experiments">EXPERIMENTS</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Notebook">NOTEBOOK</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Model">MODEL</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Measurement">MEASUREMENT</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Demonstrate">DEMONSTRATE</a></li>
 +
                </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
                <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                    PARTS
 +
                    <b class="caret"></b>
 +
                </a>
 +
                <ul class="dropdown-menu" style="left: -26px;">
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Parts">PARTS OVERVIEW</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Basic_Part">BASIC PARTS</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Composite_Part">COMPOSITE PARTS</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Part_Collection">PART COLLECTION</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Improve">IMPROVED PART</a></li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <a href="https://2018.igem.org/Team:Tianjin/Safety">
 +
                    SAFETY             
 +
                </a>
 +
            </li>
 +
            <li class="dropdown">
 +
                <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                    HUMAN PRACTICES
 +
                    <b class="caret"></b>
 +
                </a>
 +
                <ul class="dropdown-menu">
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Human_Practices">INTEGRATED</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Collaborations">COLLABORATION</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Public_Engagement">PUBLIC ENGAGEMENT</a></li>
 +
                </ul>
 +
            </li>
 +
            <li class="dropdown">
 +
                <a href="#" class="dropdown-toggle" data-toggle="dropdown">
 +
                    TEAM
 +
                    <b class="caret"></b>
 +
                </a>
 +
                <ul class="dropdown-menu" style="left: -29px;">
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Team">MEMBERS</a></li>
 +
                    <li><a href="https://2018.igem.org/Team:Tianjin/Attributions">ATTRIBUTIONS</a></li>
 +
                </ul>
 +
            </li>
 +
            <li>
 +
                <a href="https://2018.igem.org/Team:Tianjin/Judging">
 +
                    FOR JUDGES             
 +
                </a>
 +
            </li>
 +
        </ul>
 +
    </div>
 +
    </div>
 +
    </nav>
 +
    <script type="text/javascript" src="https://2018.igem.org/Team:Tianjin/js/navigation?action=raw&ctype=text/javascript"></script>
 +
    <div class="container ">
 +
        <div class="row">
 +
            <div class="col-xs-12 titleBox">
 +
                <div class="title title-big">
 +
                    <p>MODEL</p>
 +
                </div>
 +
            </div>
 +
        </div>
 +
        <div class="row partition"></div>
 +
        <div class="row">
 +
            <div class="col-xs-12 ">
 +
                <div class="title title-normal">
 +
                    <p>Overview</p>
 +
                </div>
 +
            </div>
 +
            <div class="col-xs-12 text">
 +
                <p>
 +
              The models we built included four parts. First, we established a fluorescent protein model to screen out the most suitable fluorescent protein, the main modeling method here is grayscale analysis. Then, for the large amount of measured OD values, we drew the growth curve of yeasts and it fitted logistic model. It described the growth situation of the yeasts after plasmid introduction, and we compare it with yeasts without any foreign plasmid. The growth curve also offers the best measuring point and the best measuring interval. What’s more, we drew the degradation curve of the fluorescent protein, which helps us know different characteristics of the two chosen fluorescent proteins better. Finally, we constructed a model to illustrate the oscillation of KaiA, KaiB and KaiC protein called Mars Model, it explained the reason why the cycle reduced in yeasts nicely. Modeling work integrated with experiments tightly made our project complete and convincing.
 +
                </p>
 +
            </div>
 +
        </div>
 +
        <div class="col-xs-12 partition"></div>
  
 +
        <div class="row">
 +
            <div class="panel-group" id="accordion1" role="tablist" aria-multiselectable="true">
 +
                <div class="panel panel-default text-panel">
 +
                    <div class="pan-heading text-pan-heading panel-top" id="collapsehead">
 +
                        <div class="panel-title">
 +
                            <a href="#collapseOne" role="button" data-toggle="collapse" data-parent="#accordion1" style="text-decoration: none;">
 +
                                Fluorescent Protein Evaluation Model
 +
                            </a>
 +
                        </div>
 +
                    </div>
 +
                    <div id="collapseOne" class="panel-collapse collapse" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 +
                        <div class="panel-body">
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p></p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                      As a lot of fluorescent proteins and luciferase existing, an evaluation model to evaluate the performance of every fluorescent protein was established to find the most suitable one.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    In this model, Stokes shift, quantity yield (QY), brightness, bleaching time, maturing time and acidity and alkalinity were mainly considered. First, with the analytic hierarchy process, the weight of the above index was obtained. Then, an evaluation matrix was obtained comparing the effect of any two factors ai and aj according to the standard below.
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <table class="table table-bordered">
 +
                                        <tbody>
 +
                                          <tr><td width="81"><p>relationship</p></td><td width="81"><p>a<sub>i</sub>=a<sub>j</sub></p></td><td width="105"><p>a<sub>i</sub>&gt;a<sub>j</sub>(a little)</p></td><td width="60"><p>a<sub>i</sub>&gt;a<sub>j</sub></p></td><td width="116"><p>a<sub>i</sub>&gt;a<sub>j</sub>(obviously)</p></td><td width="83"><p>a<sub>i</sub>&gt;&gt;a<sub>j</sub></p></td></tr><tr><td width="81"><p>score</p></td><td width="81"><p>1</p></td><td width="105"><p>3</p></td><td width="60"><p>5</p></td><td width="116"><p>7</p></td><td width="83"><p>9</p></td></tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                      There were five factors we should consider. To determine the weight of them, we discussed with Prof. Zhao Kun, school of chemical engineering and technology, Tianjin University and professors in Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, they gave us a suggested order as shown below.<br>
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                      Between every two standards, select numerical value 1, 3, 5, 7 to measure the relative relation between index.<br>
 +
                                    </p>
 +
                                    <table class="table table-bordered">
 +
                                        <tbody>
 +
                                          <tr><td width="83">&nbsp;</td><td width="44"><p>Stokes</p></td><td width="83"><p>QY*Brightness</p></td><td width="68"><p>Bleaching time</p></td><td width="68"><p>ph</p></td><td width="84"><p>Maturing time</p></td></tr><tr><td width="83"><p>Stokes</p></td><td width="44"><p>1</p></td><td width="83"><p>3</p></td><td width="68"><p>5</p></td><td width="68"><p>1/3</p></td><td width="84"><p>5</p></td></tr><tr><td width="83"><p>QY*Brightness</p></td><td width="44"><p>1/3</p></td><td width="83"><p>1</p></td><td width="68"><p>3</p></td><td width="68"><p>1/5</p></td><td width="84"><p>3</p></td></tr><tr><td width="83"><p>Bleaching time</p></td><td width="44"><p>1/5</p></td><td width="83"><p>1/3</p></td><td width="68"><p>1</p></td><td width="68"><p>1/7</p></td><td width="84"><p>1</p></td></tr><tr><td width="83"><p>ph</p></td><td width="44"><p>3</p></td><td width="83"><p>5</p></td><td width="68"><p>7</p></td><td width="68"><p>1</p></td><td width="84"><p>7</p></td></tr><tr><td width="83"><p>Maturing time</p></td><td width="44"><p>1/5</p></td><td width="83"><p>1/3</p></td><td width="68"><p>1</p></td><td width="68"><p>1/7</p></td><td width="84"><p>1</p></td></tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                    <p>
 +
                                        Construct standard matrix shown as below.<br>
 +
                                        <br>
 +
                                    </p>
 +
                                    <p style="font-size: 22px">$$A = \begin{bmatrix} 1 & 3 & 5 & 1/3 & 5 \\ 1/3 & 1 & 3 & 1/5 & 3 \\ 1/5 & 1/3 & 1 & 1/7 & 1 \\ 3 & 5 & 7 & 1 & 7 \\ 1/5 & 1/3 & 1 & 1/7 & 1 \end{bmatrix}$$</p>
 +
                                    <p>
 +
                                        Next, calculate the concordance index (CI) to judge whether the matrix is reasonable.<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        $$CI = {\lambda_{max}-n \over n-1} = 0.0340$$
 +
                                    </p>
 +
                                    <p>$$\lambda_{max} = 5.1361$$</p>
 +
                                    <p>λ<sub>max</sub> -- the largest eigenvalue of the evaluation matrix and n is the dimension of the matrix.<br></p>
 +
                                    <p>According to the dimension of the matrix, RI value could be found from the form below.<br></p>
 +
                                    <table class="table table-bordered">
 +
                                        <tbody>
 +
                                            <tr>
 +
                                                <td width="55">
 +
                                                    <p><strong>n</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>1</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>2</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>3</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>4</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p style="color: red;"><strong>5</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>6</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>7</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>8</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                    <p><strong>9</strong></p>
 +
                                                </td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td width="55">
 +
                                                <p><strong>R</strong><strong>I</strong></p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>0</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>0</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>0.58</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>0.90</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p style="color: red;">1.12</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>1.24</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>1.32</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>1.41</p>
 +
                                                </td>
 +
                                                <td width="55">
 +
                                                <p>1.45</p>
 +
                                                </td>
 +
                                            </tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                    <p>
 +
                                        In our model, because n=5, RI=1.12.<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        $$CR = {CI \over RI} = 0.0304$$<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        Because CI&lt;0.1, the matrix passes the consistency check. Therefore, the method we used to find the weight above is suitable.<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        Calculate the corresponding eigenvector of λ<sub>max</sub> and normalize it, W=[0.0762 0.1607 0.3621 0.0389 0.3621].<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        At last, using the method mentioned in the <a href="#re1">[1]</a>, the score table is shown as below. <br>
 +
                                    </p>
 +
                                    <table class="table table-bordered">
 +
                                        <thead style="background: #222!important;color: white;">
 +
                                            <tr>
 +
                                                <th colspan="6">Score table</th> 
 +
                                            </tr>
 +
                                        </thead>
 +
                                        <tbody>
 +
                                            <tr><td width="111"><p><strong>score</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>25</p></td><td width="79"><p>50</p></td><td width="79"><p>75</p></td><td width="79"><p>100</p></td></tr><tr><td width="111"><p><strong>Stokes</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>0-0.02</p></td><td width="79"><p>0.02-0.05</p></td><td width="79"><p>0.05-0.1</p></td><td width="79"><p>0.1-</p></td></tr><tr><td width="111"><p><strong>QY*Brightness</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>0-0.01</p></td><td width="79"><p>0.01-0.04</p></td><td width="79"><p>0.04-0.06</p></td><td width="79"><p>0.06-</p></td></tr><tr><td width="111"><p><strong>Bleaching time</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>0-0.01</p></td><td width="79"><p>0.01-0.10</p></td><td width="79"><p>0.10-0.20</p></td><td width="79"><p>0.20-</p></td></tr><tr><td width="111"><p><strong>pH</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>1.5-2.5</p><p>8.5-9.5</p></td><td width="79"><p>2.5-3.5</p><p>7.5-8.5</p></td><td width="79"><p>3.5-4.5</p><p>6.5-7.5</p></td><td width="79"><p>4.5-6.5</p></td></tr><tr><td width="111"><p><strong>Maturing time</strong></p></td><td width="64"><p>0</p></td><td width="79"><p>0-0.01</p></td><td width="79"><p>0.01-0.05</p></td><td width="79"><p>0.05-0.30</p></td><td width="79"><p>0.30-</p></td></tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>The score of every fluorescent protein can be obtained shown as <a href="#1">Figure1</a>.</p>
 +
                                </div>
  
  
  
<div class="column full_size">
 
<h1> Modeling</h1>
 
  
<p>Mathematical models and computer simulations provide a great way to describe the function and operation of BioBrick Parts and Devices. Synthetic Biology is an engineering discipline, and part of engineering is simulation and modeling to determine the behavior of your design before you build it. Designing and simulating can be iterated many times in a computer before moving to the lab. This award is for teams who build a model of their system and use it to inform system design or simulate expected behavior in conjunction with experiments in the wetlab.</p>
+
                                <p id="1"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/c/ce/T--Tianjin--tuu1.png">
 +
                                      <p>  Figure1 Selection of report genes<br> </p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
  
</div>
 
<div class="clear"></div>
 
  
<div class="column full_size">
 
<h3> Gold Medal Criterion #3</h3>
 
<p>
 
Convince the judges that your project's design and/or implementation is based on insight you have gained from modeling. This could be either a new model you develop or the implementation of a model from a previous team. You must thoroughly document your model's contribution to your project on your team's wiki, including assumptions, relevant data, model results, and a clear explanation of your model that anyone can understand.
 
<br><br>
 
The model should impact your project design in a meaningful way. Modeling may include, but is not limited to, deterministic, exploratory, molecular dynamic, and stochastic models. Teams may also explore the physical modeling of a single component within a system or utilize mathematical modeling for predicting function of a more complex device.
 
</p>
 
  
<p>
+
                                <div class="col-xs-12 text">
Please see the <a href="https://2018.igem.org/Judging/Medals"> 2018
+
                                    Because the fluorescent protein we wanted to choose had to be optimized in yeast and had to be given by parts, the following fluorescent proteins in <a href="#2">Figure2</a> were all what we could choose from.
Medals Page</a> for more information.  
+
                                </div>
</p>
+
</div>
+
  
<div class="column two_thirds_size">
 
<h3>Best Model Special Prize</h3>
 
  
<p>
+
 
To compete for the <a href="https://2018.igem.org/Judging/Awards">Best Model prize</a>, please describe your work on this page  and also fill out the description on the <a href="https://2018.igem.org/Judging/Judging_Form">judging form</a>. Please note you can compete for both the gold medal criterion #3 and the best model prize with this page.  
+
 
<br><br>
+
                                <p id="2"></p>
You must also delete the message box on the top of this page to be eligible for the Best Model Prize.
+
                              <div class="col-xs-2"></div>
</p>
+
                                <div class="col-xs-8 picture">
 +
                                <img src="https://static.igem.org/mediawiki/2018/1/1a/T--Tianjin--tuu2.png">
 +
                                <p> Figure2 Fluorescent proteins could be chose from<br> </p>
 +
                                </div>
 +
                                <div class="col-xs-2 picture">
 +
                                </div>
 +
 
 +
 
 +
 
 +
 
 +
 
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        It shows that mCherry, mOrange and EYFP ranks top 3. However, after our pre-experiment, it was found that the signal of mOrange was too weak. The reason maybe was that we sequenced the part of mOrange and found that there were some mutations. Therefore, we finally chose mCherry(66.0336 ranking 12/478) and EYFP(34.9807 ranking 82/478) as our report genes.
 +
                                    </p>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
 
 +
        <div class="row">
 +
            <div class="panel-group" id="accordion2" role="tablist" aria-multiselectable="true">
 +
                <div class="panel panel-default text-panel">
 +
                    <div class="pan-heading text-pan-heading" id="collapsehead">
 +
                        <div class="panel-title">
 +
                            <a href="#collapseTwo" role="button" data-toggle="collapse" data-parent="#accordion2" style="text-decoration: none;">
 +
                                Degradation Curve
 +
                            </a>
 +
                        </div>
 +
                    </div>
 +
                    <div id="collapseTwo" class="panel-collapse collapse" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 +
                        <div class="panel-body">
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p></p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                      The degradation of the fluorescent protein is also of great importance to our experiment. Therefore, the change of fluorescence intensity with time was measured, and here are the results.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/1/12/T--Tianjin--tutu3.png">
 +
                                    <p>Figure3 EYFP Degradation Curve</p>
 +
                                </div>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/0/00/T--Tianjin--tutu4.png">
 +
                                    <p>Figure4 mCherry Degradation Curve</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        To better explain the degradation of the fluorescent protein, we consulted a large number of documents<sup><a href="#re2">[2,3,4]</a></sup>. It shows that the degradation of the fluorescent protein is exponential.<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        The EYFP degradation curve can be described by function (1):<br>     
 +
                                    </p>
 +
                                    <p>$$f(x) = a·e^{bx} + c·e^{dx}              (1) $$</p>
 +
                                    <p>
 +
                                        Coefficients (with 95% confidence bounds):<br>
 +
                                    </p>
 +
                                    <p style="text-align: center;">
 +
                                        a = 133, b =-0.005066, c =-44.38, d =-0.02168
 +
                                    </p>
 +
                              </div>
 +
                                <p id="5"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/7/7a/T--Tianjin--tu5.jpg">
 +
                                      <p>  Figure5 Fitted EYFP Degradation Curve</p> </p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>Goodness of fit:<br></p>
 +
                                    <p>SSE: 76.77<br></p>
 +
                                    <p>R-square: 0.9443<br></p>
 +
                                    <p> Adjusted R-square: 0.9363<br></p>
 +
                                    <p>RMSE: 1.912<br></p>
 +
                                    <p>The mCherry degradation curve also can be described by function (1), but the coefficients are different.<br></p>
 +
                                    <p>Coefficients (with 95% confidence bounds):<br></p>
 +
                                    <p style="text-align: center;">a = 613.8, b = -0.0003886, c = 0.0003207, d =0.06852</p>
 +
                                </div>
 +
                                <p id="6"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/4/42/T--Tianjin--tu6.jpg">
 +
                                      <p>  Figure6 Fitted mCherry Degradation Curve </p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>Goodness of fit:<br></p>
 +
                                    <p>SSE: 82.27<br></p>
 +
                                    <p>R-square: 0.9482<br></p>
 +
                                    <p> Adjusted R-square: 0.9404<br></p>
 +
                                    <p>RMSE: 2.028<br></p>
 +
                                    <p>The fitted degradation curve of mCherry approximates a straight line, so it can be simplified as a linear function:<br></p>
 +
                                    <p>$$ f(x) = p_1·x + p_2              (2)$$</p>
 +
                                    <p>Coefficients (with 95% confidence bounds):<br></p>
 +
                                    <p>$$ p_1 = -0.2287 , p_2 = 613.6$$</p>
 +
 
 +
                                </div>
 +
                                <p id="7"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/3/35/T--Tianjin--tu7.jpg">
 +
                                      <p>  Figure7 Linear mCherry Degradation Curve </p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>Goodness of fit:<br></p>
 +
                                    <p>SSE: 82.67<br></p>
 +
                                    <p>R-square: 0.9479<br></p>
 +
                                    <p> Adjusted R-square: 0.9455<br></p>
 +
                                    <p>RMSE: 1.938<br></p>
 +
                                    <p>It can be seen that the degradation rate of different fluorescent protein is very different, which made it clearer for us to know about the characteristics of the two fluorescent protein and offered important information to our experiment.<br></p>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
 
 +
        <div class="row">
 +
            <div class="panel-group" id="accordion3" role="tablist" aria-multiselectable="true">
 +
                <div class="panel panel-default text-panel">
 +
                    <div class="pan-heading text-pan-heading" id="collapsehead">
 +
                        <div class="panel-title">
 +
                            <a href="#collapseThree" role="button" data-toggle="collapse" data-parent="#accordion3" style="text-decoration: none;">
 +
                                Growth Curve
 +
                            </a>
 +
                        </div>
 +
                    </div>
 +
                    <div id="collapseThree" class="panel-collapse collapse" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 +
                        <div class="panel-body">
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p></p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                      For the OD<sub>600</sub> values we got, we did some processing and modeling work. And here are our steps and results.<br>
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        There were three groups in our experiment. They were blank control group, partial control group and experimental group. After getting all the data, first, we drew a histogram and a scattergram of time and maximum OD<sub>600</sub>  values (<a href="#8">Figure8, 9</a>). These results were very instructive to experiments that these results told us the best measuring point and the best measuring interval.
 +
                                    </p>
 +
                                                             
 +
 
 +
                                </div>
 +
                                <p id="8"></p>
 +
                                <div class="col-xs-1"></div>
 +
                                <div class="col-xs-10 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/0/0e/T--Tianjin--tu8.png">
 +
                                      <p> Figure8 histogram of Time-Maximum OD Value<br> </p>
 +
                                </div>
 +
                              <div class="col-xs-1 picture">
 +
                                </div>
 +
                               
 +
                                <p id="9"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/0/0d/T--Tianjin--tu9.png">
 +
                                      <p>Figure9 Scatter gram of Time-Maximum OD Value<br></p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                             
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        From the beginning to the maximum OD<sub>600</sub> value, it fits the logistic model. The block effect of resource and environment for the growth of yeasts is reflected in the growth rate <em>r</em>, which makes <em>r</em> decrease with the increase in the number of yeasts <em>x</em>. Express <em>r</em> as a function<em> </em>r(<em>x</em>) of <em>x</em>, and take a simple and convenient linear reduction function r(<em>x</em>)<em>=</em>a+b<em>x.</em> In order to give a real meaning to the coefficients a and b in the growth rate function, we introduced two parameters:<br>
 +
                                        (1)<strong>Intrinsic growth rate </strong><strong><em>r</em> : </strong><em> r</em> is the growth rate when <em>x</em>=0 (in theory);<br>
 +
                                        (2)<strong>P</strong><strong>opulation capacity </strong><strong><em>x</em></strong><strong><em><sub>m</sub></em> : </strong><em> x</em><em><sub>m</sub></em><em> </em> is the largest yeast amount that can be accommodated by resources and the When <em>x=x</em><em><sub>m</sub></em>, the quantity of yeasts is no longer increasing, that is r(<em>x</em><em><sub>m</sub></em>)<em>=</em>r+b<em>x</em><em><sub>m</sub></em>=0, then b=-<em>r/x</em><em><sub>m</sub></em><em>.</em><br>
 +
                                        <em><em>r</em></em> and <em><em>x</em></em><em><sub><em>m</em></sub></em> values in our experiments are shown in the chart below.
 +
                                    </p>
 +
                                    <table class="table table-bordered table-bashed">
 +
<tbody><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>YPD</p></td><td width="140"><p>SC</p></td><td width="138"><p>BY4741</p></td><td width="107"><p>d-three</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.0164</p></td><td width="107"><p>0.0172</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.8523</p></td><td width="107"><p>0.8034</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+p1m</p></td><td width="140"><p>pABaC+p1E</p></td><td width="138"><p>pABaC+p2N</p></td><td width="107"><p>pABaC+p1F</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.002364402</p></td><td width="140"><p>0.001746617</p></td><td width="138"><p>-0.002826764</p></td><td width="107"><p>-0.001905785</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.402523944</p></td><td width="140"><p>0.508816901</p></td><td width="138"><p>0.424323944</p></td><td width="107"><p>0.542298592</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pCiRbS+p1m</p></td><td width="140"><p>pCiRbS+p2N</p></td><td width="138"><p>pCiRbS+p1F</p></td><td width="107"><p>pbCiRS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.006367923</p></td><td width="140"><p>-0.007098618</p></td><td width="138"><p>-0.007176452</p></td><td width="107"><p>-0.007853975</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.410507042</p></td><td width="140"><p>0.254873239</p></td><td width="138"><p>0.446169014</p></td><td width="107"><p>0.315098592</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pbCiRS+p1E</p></td><td width="140"><p>pbCiRS+p2N</p></td><td width="138"><p>pbCiRS+p1F</p></td><td width="107"><p>pABaC+pCiRbS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.024143608</p></td><td width="140"><p>-0.012145451</p></td><td width="138"><p>0.002428334</p></td><td width="107"><p>-0.006280764</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.413985915</p></td><td width="140"><p>0.458239437</p></td><td width="138"><p>0.270442254</p></td><td width="107"><p>0.337278873</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+pCiRbS+p1E</p></td><td width="140"><p>pABaC+pCiRbS+p2N</p></td><td width="138"><p>pABaC+pCiRbS+p1F</p></td><td width="107"><p>pABaC+pbCiRS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>0.002305512</p></td><td width="140"><p>-0.00217225</p></td><td width="138"><p>0.002272595</p></td><td width="107"><p>0.002039534</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.33171831</p></td><td width="140"><p>0.293661972</p></td><td width="138"><p>0.303701408</p></td><td width="107"><p>0.289346479</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+pbCiRS+P1e</p></td><td width="140"><p>pABaC+pbCiRS+p2N</p></td><td width="138"><p>pABaC+pbCiRS+p1F</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>0.001894111</p></td><td width="140"><p>-0.003848457</p></td><td width="138"><p>-0.007151104</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.301574648</p></td><td width="140"><p>0.345819718</p></td><td width="138"><p>0.329769014</p></td><td width="107">&nbsp;</td></tr></tbody>
 +
                                    </table>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>The resulting growth rate function is $$r(x) = r(1 - {x \over x_m}) $$  Replacing intrinsic growth rate with r(x), get $${dx \over dt} = rx(1 - {x \over x_m}) , x(0) = x_0          (3)$$ <br></p>
 +
                                    <p>
 +
                                        Factor <em>rx</em> in the function shows the growth trend of yeast amount itself, while factor (1 - <em>x/x<sub>m</sub></em>) reflects the block effects of resources and environment to the yeast quantity growth. Obviously, the bigger x is, the former factor is bigger and the latter factor is smaller. The growth of yeast amount is the result of the two factors.<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        Take <em>x</em> as the horizontal axis and <em>dx/dt</em> as the vertical axis, we obtained a parabola (<a href="#10">Figure 10</a>), when <em>x = x<sub>m</sub>/2</em>, <em>dx/dt</em> reaches the maximum. As shown in <a href="#10">Figure 10</a>, <em>dx/dt</em> changes with the increasing x, and we can do the following analysis to the curve <em>x</em>(<em>t</em>).<br>
 +
                                    </p>
 +
                                    <p>
 +
                                        Setting when <em>t</em> = 0 <em>x<sub>0</sub> &lt; x<sub>m</sub>/2</em>, with the increase of t, <em>dx/dt</em> increases, so <em>x</em> is growing faster and faster and the curve <em>x(t)</em> is raised downward; <em>dx/dt</em> decreases when <em>x<sub>0</sub> &gt; x<sub>m</sub>/2</em>, <em>x</em> grows slower and slower and the curve <em>x(t)</em> is raised upward. <em>x = x<sub>m</sub>/2</em> is the inflection point of the curve. When <em>x &rarr; x<sub>m</sub> , dx/dt &rarr; 0</em>, so <em>x = x<sub>m</sub></em> is the asymptote of <em>x(t)</em>. From the above analysis, we can draw the figure as shown in <a href="#11">Figure 11</a>.
 +
                                    </p>
 +
                                    <p>
 +
                                        Actually, equation (1) can be solved by separation of a variable method as
 +
                                    </p>
 +
                                    <p>$$x(t) = {x_m \over {1+({x_m \over x_0}-1)e^{-rt}}}          (4) $$</p>
 +
                                </div>
 +
                                    <p id="10"></p>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/f/fe/T--Tianjin--tu1010.jpg">
 +
                                    <p>Figure10  example <em>x-dx/dt</em> curve</p>
 +
                                </div>
 +
                                    <p id="11"></p>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/0/00/T--Tianjin--tu11.jpg">
 +
                                    <p>Figure11  example <em>t-x</em> curve</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        By Analyzing our data, following results were obtained similar to the above. <a href="#12">Figure12,13</a> shows the <em>t-x</em> curve and <em>x-dx/dt</em> curve of our blank control group, partial control group and experimental group. To make the results clearer, we enlarged two of them.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                </div>
 +
                                <p id="12"></p>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/4/46/T--Tianjin--tu12.jpg">
 +
                                    <p>Figure12 <em>t-x</em> curve</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                </div>
 +
                                  <p id="13"></p>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/1/15/T--Tianjin--tu13.jpg">
 +
                                    <p>Figure13  <em>x-dx/dt</em> curve</p>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
 
 +
        <div class="row">
 +
            <div class="panel-group" id="accordion4" role="tablist" aria-multiselectable="true">
 +
                <div class="panel panel-default text-panel">
 +
                    <div class="pan-heading text-pan-heading panel-bottom" id="collapsehead">
 +
                        <div class="panel-title">
 +
                            <a href="#collapseFour" role="button" data-toggle="collapse" data-parent="#accordion4" style="text-decoration: none;">
 +
                                Mars Model*
 +
                            </a>
 +
                        </div>
 +
                    </div>
 +
                    <div id="collapseFour" class="panel-collapse collapse panel-bottom" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 +
                        <div class="panel-body">
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Model Construction</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Oscillation in KaiC phosphorylation is the best-observed parameter in this system and represents a key state variable for the clock in vivo. Thus we have sought to closely mimic this output in our project. Nakajima et al. <sup><a href="#re6">[6]</a></sup> suggest, given the dual function of KaiC and ‘‘cooperation between KaiA and KaiB,’’ that autonomous oscillation of KaiC phosphorylation might be achieved. We established a model based on known biological and biochemical observations and our experiments that did not involve transcription or translation. In <a href="#14">Figure14</a>, we summarized the key steps of three Kai proteins oscillation when ATP is provided in excess. It was well established that we used three circles to represent all possible combinations of three Kai proteins, just like Mars and its two satellites. This was also why we call it <b>Mars Model</b>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The model (<a href="#14">Figure 14</a>) contained twelve processes (R1-R12) describing all the protein-protein interactions and phosphorylation-dephosphorylation between the Kai proteins. KaiXY represents KaiX and KaiY compound and KaiC* represents fully phosphorylated KaiC. Process R1, R2 and R3 are six aggregations of KaiC protein, two aggregations of KaiA protein and four aggregations of KaiB protein respectively. In process R4, KaiC<sub>6</sub> binds KaiA<sub>2</sub>, forming KaiA<sub>2</sub>C<sub>6</sub> compound. Since KaiA<sub>2</sub> facilitates the autokinase activity of KaiC<sub>6</sub>, KaiA<sub>2</sub>C<sub>6</sub> first converts to partial phosphorylated form, KaiA<sub>2</sub>C<sub>6</sub>C<sub>6</sub>*, by process R5, and then rapidly converts to fully phosphorylated form, KaiA<sub>2</sub>C<sub>6</sub>*, by process R10. Then, fully phosphorylated protein KaiA<sub>2</sub>C<sub>6</sub>* combines with KaiB<sub>4</sub>, forming KaiA<sub>2</sub>B<sub>4</sub>C<sub>6</sub>*, by process R6. In process R7, KaiA<sub>2</sub> is displaced from KaiA<sub>2</sub>B<sub>4</sub>C<sub>6</sub>*. When KaiA<sub>2</sub> no longer exists in KaiA<sub>2</sub>B<sub>4</sub>C<sub>6</sub>*, KaiB<sub>4</sub> dissociates from KaiB<sub>4</sub>C<sub>6</sub>*, by process R8. Process R9, R11, and R12 are depolymerization of KaiC<sub>6</sub>, KaiA<sub>2</sub> and KaiB<sub>4</sub> protein, respectively<sup><a href="#re7">[7]</a></sup>.
 +
                                    </p>
 +
                                </div>
 +
 
 +
<p id="14"></p>
 +
<div class="col-xs-2"></div>
 +
 
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/e/e1/T--Tianjin--tutu14.png">
 +
                                      <p>Figure14 A dynamic model of KaiABC proteins oscillation.See text for description
 +
                                    </p>
 +
                                </div>
 +
<div class="col-xs-2 picture">
  
 
</div>
 
</div>
  
  
<div class="column third_size">
+
 
<div class="highlight decoration_A_full">
+
                                <div class="col-xs-12 text">
<h3> Inspiration </h3>
+
                                    We established rate equation to every process (<a href="#15">Figure 15</a>) and the corresponding reaction rate constants are <em>k<sub>1</sub>-k<sub>12</sub></em>.
<p>
+
                                </div>
Here are a few examples from previous teams:
+
                                <p id="15"></p>
</p>
+
                                <div class="col-xs-2"></div>
<ul>
+
                                <div class="col-xs-8 picture">
<li><a href="https://2016.igem.org/Team:Manchester/Model">2016 Manchester</a></li>
+
                                    <img src="https://static.igem.org/mediawiki/2018/b/bd/T--Tianjin--tu15.png">
<li><a href="https://2016.igem.org/Team:TU_Delft/Model">2016 TU Delft</li>
+
                                      <p>Figure15 Rate equations of every reaction</p>
<li><a href="https://2014.igem.org/Team:ETH_Zurich/modeling/overview">2014 ETH Zurich</a></li>
+
                                </div>
<li><a href="https://2014.igem.org/Team:Waterloo/Math_Book">2014 Waterloo</a></li>
+
                              <div class="col-xs-2 picture">
</ul>
+
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    Input reaction rate constants <em>k<sub>1</sub>-k<sub>12</sub></em> and initial concentration of every protein, oscillatory curve of every protein could be obtained as shown in <a href="#16">Figure16</a>.
 +
 
 +
                                </div>
 +
                                <p id="16"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/6/64/T--Tianjin--tu16.jpg">
 +
                                      <p>Figure16 Oscillatory curve of every protein</p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    From <a href="#16">Figure16</a> it was known that although the peak time of each protein varies, the oscillation period of every protein is the same. Therefore, in the following analysis, we take KaiC as an example to show the change of periods.
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                        <div class="title title-normal">
 +
                                            <p>The effect of temperature change</p>
 +
                                        </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    (1)Assume the reaction rate constants change proportionally with temperature changing, the period of protein oscillation shortens as shown in <a href="#17">Figure17</a>.<br>
 +
                                    (<em>Note: All the blue curves represent the initial data and red curves represent the revised data.</em>)
 +
                                </div>
 +
                                  <p id="17"></p>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/ec/20181016152035%21T--Tianjin--tu17a.jpg">
 +
                                    <p>(a)Period shortens with temperature rising temperature falling</p>
 +
                                </div>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/ec/20181016152054%21T--Tianjin--tu17a.jpg">
 +
                                    <p>(b) Period prolongs with </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <p>
 +
                                        Figure17  Period changes with temperature changing(<em>k</em> changes proportionally)
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    (2)Assume the reaction rate constants change slightly and equally with temperature changing, the period also shortens with the temperature rising and prolongs with the temperature falling as shown in <a href="#18">Figure18</a>.
 +
                                </div>
 +
                                      <p id="18"></p>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/ec/20181016152108%21T--Tianjin--tu17a.jpg">
 +
                                    <p>(a) Period shortens with temperature rising temperature falling</p>
 +
                                </div>
 +
                                <div class="col-md-6 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/ec/20181016152124%21T--Tianjin--tu17a.jpg">
 +
                                    <p>(b) Period prolongs with</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                   
 +
                                        <p>Figure18  Period changes with temperature change(<em>k</em> changes slightly)
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        When the reaction rate constants change slightly with temperature changing, the period shortens while amplitude shortens too. Therefore, if <em>k</em> changes disproportionately, when the temperature increases, the cycle is shortened and the oscillation is unsteady. The curve tends to be gentle with time, which means the oscillation disappears shown as<a href="#19">Figure 19</a>.
 +
                                    </p>
 +
                             
 +
 
 +
                                </div>
 +
                                <p id="19"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/e/ec/T--Tianjin--tu17a.jpg">
 +
                                      <p>Figure19  The disappearance of oscillation with temperature changing</p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>The effect of phosphorylation rate</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The involved process of phosphorylation is R4 and the relating reaction rate constant is<em>k<sub>4</sub></em>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Phosphorylase in yeasts may have promoting effect to the phosphorylation of protein and yeasts offer enough ATP/ADP in vivo, which increase the rate of phosphorylation. Therefore, <em>k<sub>4</sub></em>may increases in yeasts, which makes oscillation cycle shortens shown as <a href="#20">Figure20</a>.
 +
                                    </p>
 +
                                                                </div>
 +
                                <p id="20"></p>
 +
                                <div class="col-xs-2"></div>
 +
                                <div class="col-xs-8 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/e2/20181016152023%21T--Tianjin--tu20.jpg">
 +
                                      <p>Figure20 Period changes with phosphorylation rate changing</p>
 +
                                </div>
 +
                              <div class="col-xs-2 picture">
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    When the oscillation system is transplanted into yeasts, the supply rate of KaiA , KaiB and KaiC may increase and the relating reaction rate constants are <em>k<sub>2</sub></em>, <em>k<sub>3</sub></em> and <em>k<sub>1</sub></em>. They will increase with the supply rate of three Kai proteins increasing and the result is shown as <a href="#21">Figure21</a>.
 +
                                </div>
 +
                                <p id="21"></p>
 +
                                <div class="col-md-4 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/e2/20181016152034%21T--Tianjin--tu20.jpg">
 +
                                    <p>(a)Period change with the supply rate of KaiA increasing</p>
 +
                                </div>
 +
                                <div class="col-md-4 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/e2/20181016152046%21T--Tianjin--tu20.jpg">
 +
                                    <p>(b)Period change with the supply rate of KaiB increasing</p>
 +
                                </div>
 +
                                <div class="col-md-4 col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/e2/20181016152105%21T--Tianjin--tu20.jpg">
 +
                                    <p>(c)Period change with the supply rate of KaiC increasing</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                  <p> Figure21 Period changes with oscillation environment changing</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Analysis of other process</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The above analysis involves some reaction rate constants that has real biological meaning. Besides, other reaction rate constants were also analyzed and we found them had an impact to the oscillation.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        In the following table, we list the impact of <em>k<sub>5</sub></em>-<em>k<sub>12</sub></em> changing to the oscillation. It can be seen in <a href="#22">Figure22</a> that <em>k<sub>5</sub></em> and <em>k<sub>6</sub></em> have great influence on the disappearance of the oscillation. The impact of <em>k<sub>5</sub></em>-<em>k<sub>8</sub></em> may relates to phosphorylation and temperature changing as well as other factors. Therefore, figuring out biological factors related to these reaction rate constants is one of our future work.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <table id="table2" class="table table-bordered">
 +
                                        <thead style="background: #222!important;color: white;">
 +
                                            <tr>
 +
                                                <th colspan="2">The impact of <em>k<sub>5</sub></em>-<em>k<sub>12</sub></em> changing</th>
 +
                                            </tr>
 +
                                        </thead>
 +
                                        <tbody>
 +
                                            <tr>
 +
                                                <td><em>k<sub>5</sub></em></td>
 +
                                                <td>Oscillation reduces largely with it increasing slightly; oscillation disappears with it increasing by order of magnitude.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>6</sub></em></td>
 +
                                                <td>The similar effect as <em>k<sub>5</sub></em>.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>7</sub></em></td>
 +
                                                <td>Oscillation reduces slightly with it increasing.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>8</sub></em></td>
 +
                                                <td>The similar effect as <em>k<sub>7</sub></em></td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>9</sub></em></td>
 +
                                                <td>Moderate impact on the oscillation. Oscillation disappears with it increasing by one order of magnitude.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>10</sub></em></td>
 +
                                                <td>Has little impact on the oscillation. Phase changes with it increasing.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>11</sub></em></td>
 +
                                                <td>The oscillation is fine when <em>k<sub>11</sub></em> &lt;0.1; KaiA and KaiB curve oscillates when the order of magnitude is 10<sup>-2</sup>; KaiA and KaiB oscillation disappear gradually with the order of magnitude decreasing</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k<sub>12</sub></em></td>
 +
                                                <td>The similar effect as <em>k<sub>11</sub></em></td>
 +
                                            </tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                </div>
 +
                                    <p id="22"></p>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="https://static.igem.org/mediawiki/2018/archive/e/e2/20181016152116%21T--Tianjin--tu20.jpg">
 +
                                    <p>Figure22 Period changes with <em>k<sub>5</sub></em> -<em>k<sub>10</sub></em> changing</p>
 +
                                </div>
 +
                                    <p id="23"></p>
 +
                                <div class="col-xs-12 picture">
 +
                                    <p><img src="https://static.igem.org/mediawiki/2018/e/e2/T--Tianjin--tu20.jpg">
 +
                                    Figure23 Period changes with <em>k<sub>11</sub></em> and <em>k<sub>12</sub></em> changing</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Summary</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        We propose some assumptions in combination with the model based on our experimental results.<br>
 +
                                        The following are the three main factors:
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (1)Temperature: There are two possible patterns that temperature may effects. If the reaction rate constants <em>k</em> changes proportionately, the period will shorten. If the reaction rate constants <em>k</em> changes slightly and equally, the period will shorten too while the oscillation disappears gradually.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (2)Phosphorylation: We have demonstrated through model tests that the oscillations decay rapidly with accelerated phosphorylation. Therefore, we have two conjectures: one is that phosphorylase in yeast plays a better role in promoting phosphorylation, and the other is that yeast provides sufficient or excess ATP/ADP to accelerate the rate of phosphorylation. This direction is also the focus of our further research.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (3)Concentrations of KaiA, KaiB and KaiC: Unlike the envisaged results, the concentrations of KaiA, KaiB and KaiC did not have much effect on our model in the testing of mathematical models.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Besides the above three factors, other reaction rate constants were also analyzed and their biological significance needs to be figured out in the future.
 +
                                    </p>
 +
                                </div>
 +
                            </div>
 +
                        </div>
 +
                    </div>
 +
                </div>
 +
            </div>
 +
        </div>
 +
 
 +
        <div class="row">
 +
            <div>
 +
                <div class="reference">
 +
                    <h1>References</h1>
 +
                    <p class="reftext" id="re1">
 +
                        <a>[1]Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases. In: Simondis E, Han J W, Fayyad U M eds. Proceedings of the 2<sup>nd</sup> International Conference on Data Mining (KDD-96). Portland: Oregon, 1996. 226~231</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re2">
 +
                        <a>[2]Zhou Lei. Effects of different soil conditions on the degradation of BT protein. Diss.Harbin Institute of Technology, 2018</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re3">
 +
                        <a>[3]李珍. Bt蛋白在土壤中降解的影响因素研究[D]. 华中农业大学, 2009.</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re4">
 +
                        <a>[4]张美俊, 杨武德, 冯美臣,等. 土壤含水量、温度对Bt棉间苗叶、蕾Bt蛋白降解的影响[J]. 中国生态农业学报, 2014, 22(3):300-307.</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re5">
 +
                        <a>[5]Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, et al. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414–415.</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re6">
 +
                        <a>[6]Pattanayek R, Williams DR, Pattanayek S, Xu Y, Mori T, et al. (2006) Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J 3: 2017–2028.</a>
 +
                        <br>
 +
                    </p>
 +
                    <p class="reftext" id="re7">
 +
                        <a>[7]A. Mehra, C.I. Hong, M. Shi, J.J. Loros, J.C. Dunlap, P. Ruoff, Circadian rhythmicity by autocatalysis, PLoS Comput. Biol., 2 (2006) 816-823.</a>
 +
                        <br>
 +
                    </p>
 +
                </div>   
 +
            </div>
 +
        </div>
 +
    </div>
 
</div>
 
</div>
</div>
+
 
<script type="math/tex; mode=display" id="MathJax-Element-35">
+
    <div id="footer" style="background-color: #79acdd;text-align: center;">
g(x):=a\frac{\beta(1+x^n)}{\rho+x^n}-x=0
+
        <div class="container">
 +
            <div class="row">
 +
                <div class="col-sm-3 footer-part">
 +
                    <p>
 +
                        <i class="fa fa-weixin fa-lg"></i>
 +
                        IGEMTIANJIN
 +
                    </p>
 +
                </div>
 +
                <div class="col-sm-3 footer-part">
 +
                    <p>
 +
                        <i class="fa fa-twitter fa-lg"></i>
 +
                        IGEMTIANJIN2018
 +
                    </p>
 +
                </div>
 +
                <div class="col-sm-3 footer-part">
 +
                    <p>
 +
                        <i class="fa fa-envelope fa-lg"></i>
 +
                        HEBO@TJU.EDU.CN
 +
                    </p>
 +
                </div>
 +
                <div class="col-sm-3 footer-part">
 +
                    <p>
 +
                        <i class="fa fa-institution fa-lg"></i>
 +
                        BEIYANG CAMPUS,TIANJIN UNIVERSITY,TIANJIN
 +
                    </p>
 +
                </div>
 +
            </div>
 +
        </div>
 +
    </div>
 +
<script type="text/x-mathjax-config;executed=true">
 +
  MathJax.Hub.Config({tex2jax: {inlineMath: [['$','$'], ['\\(','\\)']]}});
 
</script>
 
</script>
<script src="https://2015.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML">
+
<script type="text/javascript" src="https://2018.igem.org/common/MathJax-2.5-latest/MathJax.js?config=TeX-AMS-MML_HTMLorMML"></script>
 +
</body>
 
</html>
 
</html>

Latest revision as of 13:01, 6 December 2018

<!DOCTYPE html> Team:Tianjin - 2018.igem.org

MODEL

Overview

The models we built included four parts. First, we established a fluorescent protein model to screen out the most suitable fluorescent protein, the main modeling method here is grayscale analysis. Then, for the large amount of measured OD values, we drew the growth curve of yeasts and it fitted logistic model. It described the growth situation of the yeasts after plasmid introduction, and we compare it with yeasts without any foreign plasmid. The growth curve also offers the best measuring point and the best measuring interval. What’s more, we drew the degradation curve of the fluorescent protein, which helps us know different characteristics of the two chosen fluorescent proteins better. Finally, we constructed a model to illustrate the oscillation of KaiA, KaiB and KaiC protein called Mars Model, it explained the reason why the cycle reduced in yeasts nicely. Modeling work integrated with experiments tightly made our project complete and convincing.