Difference between revisions of "Team:Tianjin/Model"

Line 371: Line 371:
 
                                         The EYFP degradation curve can be described by function (1):<br>     
 
                                         The EYFP degradation curve can be described by function (1):<br>     
 
                                     </p>
 
                                     </p>
                                     <p>$$f(x) = a·e^{bx} + c·e^{dx}              (1)$$</p>
+
                                     <p>$$f(x) = a·e^{bx} + c·e^{dx}              (1) $$</p>
 
                                     <p>
 
                                     <p>
 
                                         Coefficients (with 95% confidence bounds):<br>
 
                                         Coefficients (with 95% confidence bounds):<br>
Line 470: Line 470:
 
                                     <p>
 
                                     <p>
 
                                         From the beginning to the maximum OD<sub>600</sub>&nbsp;value, it fits the&nbsp;logistic model. The block effect of resource and environment for the growth of yeasts is reflected in the growth rate <em>r</em>, which makes <em>r</em>&nbsp;decrease with the increase in the number of yeasts <em>x</em>. Express <em>r</em>&nbsp;as a function<em>&nbsp;</em>r(<em>x</em>) of <em>x</em>, and take a simple and convenient linear reduction function r(<em>x</em>)<em>=</em>a+b<em>x.</em>&nbsp;In order to give a real meaning to the coefficients a and b in the growth rate function, we introduced two parameters:<br>
 
                                         From the beginning to the maximum OD<sub>600</sub>&nbsp;value, it fits the&nbsp;logistic model. The block effect of resource and environment for the growth of yeasts is reflected in the growth rate <em>r</em>, which makes <em>r</em>&nbsp;decrease with the increase in the number of yeasts <em>x</em>. Express <em>r</em>&nbsp;as a function<em>&nbsp;</em>r(<em>x</em>) of <em>x</em>, and take a simple and convenient linear reduction function r(<em>x</em>)<em>=</em>a+b<em>x.</em>&nbsp;In order to give a real meaning to the coefficients a and b in the growth rate function, we introduced two parameters:<br>
                                         (1)<strong>Intrinsic growth rate </strong><strong><em>r </em></strong><em>r</em> is the growth rate when <em>x</em>=0 (in theory);<br>
+
                                         (1)<strong>Intrinsic growth rate </strong><strong><em>r: </em></strong><em> r</em> is the growth rate when <em>x</em>=0 (in theory);<br>
                                         (2)<strong>P</strong><strong>opulation capacity </strong><strong><em>x</em></strong><strong><em><sub>m</sub></em></strong><em>x</em><em><sub>m</sub></em><em>&nbsp;</em> is the largest yeast amount that can be accommodated by resources and the When <em>x=x</em><em><sub>m</sub></em>, the quantity of yeasts is no longer increasing, that is r(<em>x</em><em><sub>m</sub></em>)<em>=</em>r+b<em>x</em><em><sub>m</sub></em>=0, then b=-<em>r/x</em><em><sub>m</sub></em><em>.</em><br>
+
                                         (2)<strong>P</strong><strong>opulation capacity </strong><strong><em>x</em></strong><strong><em><sub>m</sub>: </em></strong><em> x</em><em><sub>m</sub></em><em>&nbsp;</em> is the largest yeast amount that can be accommodated by resources and the When <em>x=x</em><em><sub>m</sub></em>, the quantity of yeasts is no longer increasing, that is r(<em>x</em><em><sub>m</sub></em>)<em>=</em>r+b<em>x</em><em><sub>m</sub></em>=0, then b=-<em>r/x</em><em><sub>m</sub></em><em>.</em><br>
 
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em>&nbsp;values in our experiments are shown in the chart below.
 
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em>&nbsp;values in our experiments are shown in the chart below.
 
                                     </p>
 
                                     </p>
Line 490: Line 490:
 
                                 </div>
 
                                 </div>
 
                                 <div class="col-xs-12 text">
 
                                 <div class="col-xs-12 text">
                                     <p>The resulting growth rate function is $$r(x) = r(1 - {x \over x_m}) $$  Replacing intrinsic growth rate with r(x), get $${dx \over dt} = rx(1 - {x \over x_m}) , x(0) = x_0          (1)$$ <br></p>
+
                                     <p>The resulting growth rate function is $$r(x) = r(1 - {x \over x_m}) $$  Replacing intrinsic growth rate with r(x), get $${dx \over dt} = rx(1 - {x \over x_m}) , x(0) = x_0          (3)$$ <br></p>
 
                                     <p>
 
                                     <p>
 
                                         Factor <em>rx</em> in the function shows the growth trend of yeast amount itself, while factor $$(1 - {x \over x_m}); reflects the block effects of resources and environment to the yeast quantity growth. Obviously, the bigger x is, the former factor is bigger and the latter factor is smaller. The growth of yeast amount is the result of the two factors.<br>
 
                                         Factor <em>rx</em> in the function shows the growth trend of yeast amount itself, while factor $$(1 - {x \over x_m}); reflects the block effects of resources and environment to the yeast quantity growth. Obviously, the bigger x is, the former factor is bigger and the latter factor is smaller. The growth of yeast amount is the result of the two factors.<br>
Line 498: Line 498:
 
                                     </p>
 
                                     </p>
 
                                     <p>
 
                                     <p>
                                         Setting when <em>t</em>=0 <em>x<sub>0</sub> &lt x<sub>m</sub>/2</em>, with the increase of t, <em>dx/dt</em> increases, so <em>x</em> is growing faster and faster and the curve <em>x(t)</em> is raised downward; <em>dx/dt</em> decreases when <em>x_0 &gt x_m/2</em>, <em>x</em> grows slower and slower and the curve <em>x(t)</em> is raised upward. <em>x = x_m/2</em> is the inflection point of the curve. When <em>x &rarr x_m , dx/dt &rarr 0</em>, so <em>x = x_m</em> is the asymptote of <em>x(t)</em>. From the above analysis, we can draw the figure as shown in <a href="#11">Figure 11</a>.
+
                                         Setting when <em>t</em>=0 <em>x<sub>0</sub> &lt; x<sub>m</sub>/2</em>, with the increase of t, <em>dx/dt</em> increases, so <em>x</em> is growing faster and faster and the curve <em>x(t)</em> is raised downward; <em>dx/dt</em> decreases when <em>x_0 &gt; x_m/2</em>, <em>x</em> grows slower and slower and the curve <em>x(t)</em> is raised upward. <em>x = x_m/2</em> is the inflection point of the curve. When <em>x &rarr; x_m , dx/dt &rarr; 0</em>, so <em>x = x_m</em> is the asymptote of <em>x(t)</em>. From the above analysis, we can draw the figure as shown in <a href="#11">Figure 11</a>.
 
                                     </p>
 
                                     </p>
 
                                     <p>
 
                                     <p>
 
                                         Actually, equation (1) can be solved by separation of a variable method as  
 
                                         Actually, equation (1) can be solved by separation of a variable method as  
 
                                     </p>
 
                                     </p>
                                     <p>$$x(t) = {x_m \over {1+({x_m \over x_0}-1)e^{-rt}}}          (2) $$</p>
+
                                     <p>$$x(t) = {x_m \over {1+({x_m \over x_0}-1)e^{-rt}}}          (4) $$</p>
 
                                 </div>
 
                                 </div>
 
                                 <div class="col-xs-6 picture">
 
                                 <div class="col-xs-6 picture">

Revision as of 11:55, 16 October 2018

<!DOCTYPE html> Team:Tianjin - 2018.igem.org

Model

Overview

The models we built included four parts. First, we established a fluorescent protein model to screen out the most suitable fluorescent protein, the main modeling method here is grayscale analysis. Then, for the large amount of measured OD values, we drew the growth curve of yeasts and it fitted logistic model. It described the growth situation of the yeasts after plasmid introduction, and we compare it with yeasts without any foreign plasmid. The growth curve also offers the best measuring point and the best measuring interval. What’s more, we drew the degradation curve of the fluorescent protein, which helps us know different characteristics of the two chosen fluorescent proteins better. Finally, we constructed a model to illustrate the oscillation of KaiA, KaiB and KaiC protein called Mars Model, it explained the reason why the cycle reduced in yeasts nicely. Modeling work integrated with experiments tightly made our project complete and convincing.