Difference between revisions of "Team:Tianjin/Model"

Line 21: Line 21:
 
         .MathJax_Display{
 
         .MathJax_Display{
 
             font-size: 22px;
 
             font-size: 22px;
 +
        }
 +
        table.table.table-bordered.table-bashed tr:nth-child(3n+2){
 +
            border-bottom: 2px dashed #ddd;
 
         }
 
         }
 
     </style>
 
     </style>
Line 495: Line 498:
 
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em>&nbsp;values in our experiments are shown in the chart below.
 
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em>&nbsp;values in our experiments are shown in the chart below.
 
                                     </p>
 
                                     </p>
                                     <table class="table table-bordered">
+
                                     <table class="table table-bordered table-bashed">
                                        <thead style="background: #222!important;color: white;">
+
<tbody><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p><strong>YPD</strong></p></td><td width="140"><p><strong>SC</strong></p></td><td width="138"><p><strong>BY4741</strong></p></td><td width="107"><p><strong>d-three</strong></p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.0164</p></td><td width="107"><p>0.0172</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.8523</p></td><td width="107"><p>0.8034</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+p1m</p></td><td width="140"><p>pABaC+p1E</p></td><td width="138"><p>pABaC+p2N</p></td><td width="107"><p>pABaC+p1F</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.002364402</p></td><td width="140"><p>0.001746617</p></td><td width="138"><p>-0.002826764</p></td><td width="107"><p>-0.001905785</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.402523944</p></td><td width="140"><p>0.508816901</p></td><td width="138"><p>0.424323944</p></td><td width="107"><p>0.542298592</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pCiRbS+p1m</p></td><td width="140"><p>pCiRbS+p2N</p></td><td width="138"><p>pCiRbS+p1F</p></td><td width="107"><p>pbCiRS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.006367923</p></td><td width="140"><p>-0.007098618</p></td><td width="138"><p>-0.007176452</p></td><td width="107"><p>-0.007853975</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.410507042</p></td><td width="140"><p>0.254873239</p></td><td width="138"><p>0.446169014</p></td><td width="107"><p>0.315098592</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pbCiRS+p1E</p></td><td width="140"><p>pbCiRS+p2N</p></td><td width="138"><p>pbCiRS+p1F</p></td><td width="107"><p>pABaC+pCiRbS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>-0.024143608</p></td><td width="140"><p>-0.012145451</p></td><td width="138"><p>0.002428334</p></td><td width="107"><p>-0.006280764</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.413985915</p></td><td width="140"><p>0.458239437</p></td><td width="138"><p>0.270442254</p></td><td width="107"><p>0.337278873</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+pCiRbS+p1E</p></td><td width="140"><p>pABaC+pCiRbS+p2N</p></td><td width="138"><p>pABaC+pCiRbS+p1F</p></td><td width="107"><p>pABaC+pbCiRS+p1m</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>0.002305512</p></td><td width="140"><p>-0.00217225</p></td><td width="138"><p>0.002272595</p></td><td width="107"><p>0.002039534</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.33171831</p></td><td width="140"><p>0.293661972</p></td><td width="138"><p>0.303701408</p></td><td width="107"><p>0.289346479</p></td></tr><tr><td width="38"><p><strong>&nbsp;</strong></p></td><td width="151"><p>pABaC+pbCiRS+P1e</p></td><td width="140"><p>pABaC+pbCiRS+p2N</p></td><td width="138"><p>pABaC+pbCiRS+p1F</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="38"><p><strong>r</strong></p></td><td width="151"><p>0.001894111</p></td><td width="140"><p>-0.003848457</p></td><td width="138"><p>-0.007151104</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="38"><p><strong>x<sub>m</sub></strong></p></td><td width="151"><p>0.301574648</p></td><td width="140"><p>0.345819718</p></td><td width="138"><p>0.329769014</p></td><td width="107">&nbsp;</td></tr></tbody>
                                            <tr>
+
                                                <th>&nbsp;</th>
+
                                                <th>YPD</th>
+
                                                <th>SC</th>
+
                                                <th>BY4741</th>
+
                                                <th>D-THREE</th>
+
                                            </tr>
+
                                        </thead>
+
                                        <tbody>
+
                                            <tr><td width="38" rowspan="3"><p><strong>r<br>x<sub>m</sub><br>&nbsp;</strong></p></td><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.0164</p></td><td width="107"><p>0.0172</p></td></tr><tr><td width="151"><p>&nbsp;</p></td><td width="140"><p>&nbsp;</p></td><td width="138"><p>0.8523</p></td><td width="107"><p>0.8034</p></td></tr><tr><td width="151"><p>pABaC+p1m</p></td><td width="140"><p>pABaC+p1E</p></td><td width="138"><p>pABaC+p2N</p></td><td width="107"><p>pABaC+p1F</p></td></tr><tr><td width="38" rowspan="3"><p><strong>r<br>x<sub>m</sub><br>&nbsp;</strong></p></td><td width="151"><p>-0.002364402</p></td><td width="140"><p>0.001746617</p></td><td width="138"><p>-0.002826764</p></td><td width="107"><p>-0.001905785</p></td></tr><tr><td width="151"><p>0.402523944</p></td><td width="140"><p>0.508816901</p></td><td width="138"><p>0.424323944</p></td><td width="107"><p>0.542298592</p></td></tr><tr><td width="151"><p>pCiRbS+p1m</p></td><td width="140"><p>pCiRbS+p2N</p></td><td width="138"><p>pCiRbS+p1F</p></td><td width="107"><p>pbCiRS+p1m</p></td></tr><tr><td width="38" rowspan="3"><p><strong>r<br>x<sub>m</sub><br>&nbsp;</strong></p></td><td width="151"><p>-0.006367923</p></td><td width="140"><p>-0.007098618</p></td><td width="138"><p>-0.007176452</p></td><td width="107"><p>-0.007853975</p></td></tr><tr><td width="151"><p>0.410507042</p></td><td width="140"><p>0.254873239</p></td><td width="138"><p>0.446169014</p></td><td width="107"><p>0.315098592</p></td></tr><tr><td width="151"><p>pbCiRS+p1E</p></td><td width="140"><p>pbCiRS+p2N</p></td><td width="138"><p>pbCiRS+p1F</p></td><td width="107"><p>pABaC+pCiRbS+p1m</p></td></tr><tr><td width="38" rowspan="3"><p><strong>r<br>x<sub>m</sub><br>&nbsp;</strong></p></td><td width="151"><p>-0.024143608</p></td><td width="140"><p>-0.012145451</p></td><td width="138"><p>0.002428334</p></td><td width="107"><p>-0.006280764</p></td></tr><tr><td width="151"><p>0.413985915</p></td><td width="140"><p>0.458239437</p></td><td width="138"><p>0.270442254</p></td><td width="107"><p>0.337278873</p></td></tr><tr><td width="151"><p>pABaC+pCiRbS+p1E</p></td><td width="140"><p>pABaC+pCiRbS+p2N</p></td><td width="138"><p>pABaC+pCiRbS+p1F</p></td><td width="107"><p>pABaC+pbCiRS+p1m</p></td></tr><tr><td width="38" rowspan="3"><p><strong>r<br>x<sub>m</sub><br>&nbsp;</strong></p></td><td width="151"><p>0.002305512</p></td><td width="140"><p>-0.00217225</p></td><td width="138"><p>0.002272595</p></td><td width="107"><p>0.002039534</p></td></tr><tr><td width="151"><p>0.33171831</p></td><td width="140"><p>0.293661972</p></td><td width="138"><p>0.303701408</p></td><td width="107"><p>0.289346479</p></td></tr><tr><td width="151"><p>pABaC+pbCiRS+P1e</p></td><td width="140"><p>pABaC+pbCiRS+p2N</p></td><td width="138"><p>pABaC+pbCiRS+p1F</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="38" rowspan="2"><p><strong>r<br>x<sub>m</sub></strong></p></td><td width="151"><p>0.001894111</p></td><td width="140"><p>-0.003848457</p></td><td width="138"><p>-0.007151104</p></td><td width="107"><p>&nbsp;</p></td></tr><tr><td width="151"><p>0.301574648</p></td><td width="140"><p>0.345819718</p></td><td width="138"><p>0.329769014</p></td><td width="107">&nbsp;</td></tr>
+
                                        </tbody>
+
 
                                     </table>
 
                                     </table>
 
                                 </div>
 
                                 </div>
Line 566: Line 558:
 
                         <div class="panel-title">
 
                         <div class="panel-title">
 
                             <a href="#collapseFour" role="button" data-toggle="collapse" data-parent="#accordion4" style="text-decoration: none;">
 
                             <a href="#collapseFour" role="button" data-toggle="collapse" data-parent="#accordion4" style="text-decoration: none;">
                                 ???????????????
+
                                 Mars Model
 
                             </a>
 
                             </a>
 
                         </div>
 
                         </div>
Line 572: Line 564:
 
                     <div id="collapseFour" class="panel-collapse collapse panel-bottom" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 
                     <div id="collapseFour" class="panel-collapse collapse panel-bottom" role="tabpanel" aria-labelledby="collapsehead" aria-expanded="false"">
 
                         <div class="panel-body">
 
                         <div class="panel-body">
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Model Construction</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Oscillation in KaiC phosphorylation is the best-observed parameter in this system and represents a key state variable for the clock in vivo. Thus we have sought to closely mimic this output in our project. Nakajima et al. <sup><a href="#re6">[6]</a></sup> suggest, given the dual function of KaiC and ‘‘cooperation between KaiA and KaiB,’’ that autonomous oscillation of KaiC phosphorylation might be achieved. We established a model based on known biological and biochemical observations and our experiments that did not involve transcription or translation. In Figure14, we summarized the key steps of three Kai proteins oscillation when ATP is provided in excess. It was well established that we used three circles to represent all possible combinations of three Kai proteins. This was also why we call it Mars Model.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The model (Figure 14) contained twelve processes (R1-R12) describing all the protein-protein interactions and phosphorylation-dephosphorylation between the Kai proteins. KaiXY represents KaiX and KaiY compound and KaiC* represents fully phosphorylated KaiC. Process R1, R2 and R3 are six aggregations of KaiC protein, two aggregations of KaiA protein and four aggregations of KaiB protein respectively. In process R4, KaiC6 binds KaiA2, forming KaiA2C6 compound. Since KaiA2 facilitates the autokinase activity of KaiC6, KaiA2C6 first converts to partial phosphorylated form, KaiA2C6C6*, by process R5, and then rapidly converts to fully phosphorylated form, KaiA2C6*, by process R10. Then, fully phosphorylated protein KaiA2C6* combines with KaiB4, forming KaiA2B4C6*, by process R6. In process R7, KaiA2 is displaced from KaiA2B4C6*. When KaiA2 no longer exists in KaiA2B4C6*, KaiB4 dissociates from KaiB4C6*, by process R8. Process R9, R11, and R12 are depolymerization of KaiC6, KaiA2 and KaiB4 protein, respectively<sup><a href="#re7">[7]</a></sup>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="14">Figure14 A dynamic model of KaiABC proteins oscillation.See text for description</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    We established rate equation to every process (<a href="15">Figure 15</a>) and the corresponding reaction rate constants are <em>k1-k12</em>.
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="15">Figure15 Rate equations of every reaction</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    Input reaction rate constants <em>k1-k12</em> and initial concentration of every protein, oscillatory curve of every protein could be obtained as shown in Figure16.
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="16">Figure16 Oscillatory curve of every protein</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    From Figure16 it was known that although the peak time of each protein varies, the oscillation period of every protein is the same. Therefore, in the following analysis, we take KaiC as an example to show the change of periods.
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                        <div class="title title-normal">
 +
                                            <p>The effect of temperature change</p>
 +
                                        </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    (1)Assume the reaction rate constants change proportionally with temperature changing, the period of protein oscillation shortens as shown in Figure17.<br>
 +
                                    (Note: All the blue curves represent the initial data and red curves represent the revised data.)
 +
                                </div>
 +
                                <div class="col-xs-6 picture">
 +
                                    <img src="">
 +
                                    <p>(a)Period shortens with temperature rising temperature falling</p>
 +
                                </div>
 +
                                <div class="col-xs-6 picture">
 +
                                    <img src="">
 +
                                    <p>(b) Period prolongs with </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <p id="17">
 +
                                        Figure17  Period changes with temperature changing(<em>k</em> changes proportionally)
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    (2)Assume the reaction rate constants change slightly and equally with temperature changing, the period also shortens with the temperature rising and prolongs with the temperature falling as shown in <a href="#18">Figure18</a>.
 +
                                </div>
 +
                                <div class="col-xs-6 picture">
 +
                                    <img src="">
 +
                                    <p>(a) Period shortens with temperature rising temperature falling</p>
 +
                                </div>
 +
                                <div class="col-xs-6 picture">
 +
                                    <img src="">
 +
                                    <p>(b) Period prolongs with</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <p id="18">
 +
                                        Figure18  Period changes with temperature change(<em>k</em> changes slightly)
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        When the reaction rate constants change slightly with temperature changing, the period shortens while amplitude shortens too. Therefore, if <em>k</em> changes disproportionately, when the temperature increases, the cycle is shortened and the oscillation is unsteady. The curve tends to be gentle with time, which means the oscillation disappears shown as <a href="#18">Figure 18</a>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="19">Figure19  The disappearance of oscillation with temperature changing</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>The effect of phosphorylation rate</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The involved process of phosphorylation is R4 and the relating reaction rate constant is<em>k4</em>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Phosphorylase in yeasts may have promoting effect to the phosphorylation of protein and yeasts offer enough ATP/ADP in vivo, which increase the rate of phosphorylation. Therefore, <em>k4</em>may increases in yeasts, which makes oscillation cycle shortens shown as <a href="#20">Figure20</a>.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="20">Figure20 Period changes with phosphorylation rate changing</p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    When the oscillation system is transplanted into yeasts, the supply rate of KaiA , KaiB and KaiC may increase and the relating reaction rate constants are <em>k2</em>, <em>k3</em> and <em>k1</em>. They will increase with the supply rate of three Kai proteins increasing and the result is shown as <a href="#21">Figure21</a>.
 +
                                </div>
 +
                                <div class="col-xs-4 picture">
 +
                                    <img src="">
 +
                                    <p>(a)Period change with the supply rate of KaiA increasing</p>
 +
                                </div>
 +
                                <div class="col-xs-4 picture">
 +
                                    <img src="">
 +
                                    <p>(b)Period change with the supply rate of KaiB increasing</p>
 +
                                </div>
 +
                                <div class="col-xs-4 picture">
 +
                                    <img src="">
 +
                                    <p>(c)Period change with the supply rate of KaiC increasing</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <p id="21">Figure21 Period changes with oscillation environment changing</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Analysis of other process</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        The above analysis involves some reaction rate constants that has real biological meaning. Besides, other reaction rate constants were also analyzed and we found them had an impact to the oscillation.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        In the following table, we list the impact of <em>k5</em>-<em>k12</em> changing to the oscillation. It can be seen in Figure22 that <em>k5</em> and <em>k6</em> have great influence on the disappearance of the oscillation. The impact of <em>k5</em>-<em>k8</em> may relates to phosphorylation and temperature changing as well as other factors. Therefore, figuring out biological factors related to these reaction rate constants is one of our future work.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <table id="table2" class="table table-bordered">
 +
                                        <thead style="background: #222!important;color: white;">
 +
                                            <tr>
 +
                                                <th colspan="2">The impact of <em>k5</em>-<em>k12</em> changing</th>
 +
                                            </tr>
 +
                                        </thead>
 +
                                        <tbody>
 +
                                            <tr>
 +
                                                <td><em>k5</em></td>
 +
                                                <td>Oscillation reduces largely with it increasing slightly; oscillation disappears with it increasing by order of magnitude.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k6</em></td>
 +
                                                <td>The similar effect as <em>k5</em>.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k7</em></td>
 +
                                                <td>Oscillation reduces slightly with it increasing.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k8</em></td>
 +
                                                <td>The similar effect as <em>k7</em></td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k9</em></td>
 +
                                                <td>Moderate impact on the oscillation. Oscillation disappears with it increasing by one order of magnitude.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k10</em></td>
 +
                                                <td>Has little impact on the oscillation. Phase changes with it increasing.</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k11</em></td>
 +
                                                <td>The oscillation is fine when <em>k11</em> &lt;0.1; KaiA and KaiB curve oscillates when the order of magnitude is 10-2; KaiA and KaiB oscillation disappear gradually with the order of magnitude decreasing</td>
 +
                                            </tr>
 +
                                            <tr>
 +
                                                <td><em>k12</em></td>
 +
                                                <td>The similar effect as <em>k12</em></td>
 +
                                            </tr>
 +
                                        </tbody>
 +
                                    </table>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="22">Figure22 Period changes with <em>k5</em> -<em>k10</em> changing</p>
 +
                                </div>
 +
                                <div class="col-xs-12 picture">
 +
                                    <img src="">
 +
                                    <p id="23">Figure23 Period changes with <em>k11</em> and <em>k12</em> changing</p>
 +
                                </div>
 +
                            </div>
 +
                            <div class="row">
 +
                                <div class="col-xs-12">
 +
                                    <div class="title title-normal">
 +
                                        <p>Summery</p>
 +
                                    </div>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        We propose some assumptions in combination with the model based on our experimental results.<br>
 +
                                        The following are the three main factors:
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (1)Temperature: There are two possible patterns that temperature may effects. If the reaction rate constants k changes proportionately, the period will shorten. If the reaction rate constants k changes slightly and equally, the period will shorten too while the oscillation disappears gradually.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (2)Phosphorylation: We have demonstrated through model tests that the oscillations decay rapidly with accelerated phosphorylation. Therefore, we have two conjectures: one is that phosphorylase in yeast plays a better role in promoting phosphorylation, and the other is that yeast provides sufficient or excess ATP/ADP to accelerate the rate of phosphorylation. This direction is also the focus of our further research.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        (3)Concentrations of KaiA, KaiB and KaiC: Unlike the envisaged results, the concentrations of KaiA, KaiB and KaiC did not have much effect on our model in the testing of mathematical models.
 +
                                    </p>
 +
                                </div>
 +
                                <div class="col-xs-12 text">
 +
                                    <p>
 +
                                        Besides the above three factors, other reaction rate constants were also analyzed and their biological significance needs to be figured out in the future.
 +
                                    </p>
 +
                                </div>
 +
                            </div>
 
                         </div>
 
                         </div>
 
                     </div>
 
                     </div>
Line 578: Line 797:
 
         </div>
 
         </div>
  
       
 
 
         <div class="row">
 
         <div class="row">
 
             <div>
 
             <div>
Line 584: Line 802:
 
                     <h1>References</h1>
 
                     <h1>References</h1>
 
                     <p class="reftext" id="re1">
 
                     <p class="reftext" id="re1">
                         <a>[1]Tseng, R. et al. Structural basis of the day-night transition in a bacterial circadian clock. Science 355, 1174-1180, doi:10.1126/science.aag2516 (2017).</a>
+
                         <a>[1]Ester M, Kriegel H P, Sander J et al. A density-based algorithm for discovering clusters in large spatial databases. In: Simondis E, Han J W, Fayyad U M eds. Proceedings of the 2<sup>nd</sup>&nbsp;International Conference on Data Mining (KDD-96). Portland: Oregon, 1996. 226~231</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re2">
 
                     <p class="reftext" id="re2">
                         <a>[2]Shultzaberger, R. K., Boyd, J. S., Diamond, S., Greenspan, R. J. & Golden, S. S. Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context. Annu Rev Genet 49, 485-505, doi:10.1146/annurev-genet-111212-133227 (2015).</a>
+
                         <a>[2]Zhou Lei. Effects of different soil conditions on the degradation of BT protein. Diss.Harbin Institute of Technology, 2018</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re3">
 
                     <p class="reftext" id="re3">
                         <a>[3]Woelfle, M. A., Xu, Y., Qin, X. & Johnson, C. H. Circadian rhythms of superhelical status of DNA in cyanobacteria. Proc Natl Acad Sci U S A 104, 18819-18824, doi:10.1073/pnas.0706069104 (2007).</a>
+
                         <a>[3]李珍. Bt蛋白在土壤中降解的影响因素研究[D]. 华中农业大学, 2009.</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re4">
 
                     <p class="reftext" id="re4">
                         <a>[4]Kageyama, H. et al. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Mol Cell 23, 161-171, doi:10.1016/j.molcel.2006.05.039 (2006).</a>
+
                         <a>[4]张美俊, 杨武德, 冯美臣,等. 土壤含水量、温度对Bt棉间苗叶、蕾Bt蛋白降解的影响[J]. 中国生态农业学报, 2014, 22(3):300-307.</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re5">
 
                     <p class="reftext" id="re5">
                         <a>[5]Terauchi, K. et al. ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria. P Natl Acad Sci USA 104, 16377-16381, doi:10.1073/pnas.0706292104 (2007).</a>
+
                         <a>[5]Nakajima M, Imai K, Ito H, Nishiwaki T, Murayama Y, et al. (2005) Reconstitution of circadian oscillation of cyanobacterial KaiC phosphorylation in vitro. Science 308: 414–415.</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re6">
 
                     <p class="reftext" id="re6">
                         <a>[6]Narlikar, G. J., Fan, H. Y. & Kingston, R. E. Cooperation between complexes that regulate chromatin structure and transcription. Cell 108, 475-487, doi:Doi 10.1016/S0092-8674(02)00654-2 (2002).</a>
+
                         <a>[6]Pattanayek R, Williams DR, Pattanayek S, Xu Y, Mori T, et al. (2006) Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods. EMBO J 3: 2017–2028.</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>
 
                     <p class="reftext" id="re7">
 
                     <p class="reftext" id="re7">
                         <a>[7]Rust, M. J., Golden, S. S. & O'Shea, E. K. Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator. Science 331, 220-223, doi:10.1126/science.1197243 (2011).</a>
+
                         <a>[7]A. Mehra, C.I. Hong, M. Shi, J.J. Loros, J.C. Dunlap, P. Ruoff, Circadian rhythmicity by autocatalysis, PLoS Comput. Biol., 2 (2006) 816-823.</a>
 
                         <br>
 
                         <br>
 
                     </p>
 
                     </p>

Revision as of 16:39, 16 October 2018

<!DOCTYPE html> Team:Tianjin - 2018.igem.org

MODEL

Overview

The models we built included four parts. First, we established a fluorescent protein model to screen out the most suitable fluorescent protein, the main modeling method here is grayscale analysis. Then, for the large amount of measured OD values, we drew the growth curve of yeasts and it fitted logistic model. It described the growth situation of the yeasts after plasmid introduction, and we compare it with yeasts without any foreign plasmid. The growth curve also offers the best measuring point and the best measuring interval. What’s more, we drew the degradation curve of the fluorescent protein, which helps us know different characteristics of the two chosen fluorescent proteins better. Finally, we constructed a model to illustrate the oscillation of KaiA, KaiB and KaiC protein called Mars Model, it explained the reason why the cycle reduced in yeasts nicely. Modeling work integrated with experiments tightly made our project complete and convincing.