Difference between revisions of "Team:Tianjin/Model"

Line 390: Line 390:
 
                                     <p>Figure3 EYFP Degradation Curve</p>
 
                                     <p>Figure3 EYFP Degradation Curve</p>
 
                                 </div>
 
                                 </div>
                                 <div class="col-xs-6 picture">
+
                                 <div class="col-md-6 col-xs-12 picture">
 
                                     <img src="https://static.igem.org/mediawiki/2018/0/00/T--Tianjin--tutu4.png">
 
                                     <img src="https://static.igem.org/mediawiki/2018/0/00/T--Tianjin--tutu4.png">
 
                                     <p>Figure4 mCherry Degradation Curve</p>
 
                                     <p>Figure4 mCherry Degradation Curve</p>
Line 504: Line 504:
 
                                 <div class="col-xs-12 text">
 
                                 <div class="col-xs-12 text">
 
                                     <p>
 
                                     <p>
                                         From the beginning to the maximum OD<sub>600</sub>&nbsp;value, it fits the&nbsp;logistic model. The block effect of resource and environment for the growth of yeasts is reflected in the growth rate <em>r</em>, which makes <em>r</em>&nbsp;decrease with the increase in the number of yeasts <em>x</em>. Express <em>r</em>&nbsp;as a function<em>&nbsp;</em>r(<em>x</em>) of <em>x</em>, and take a simple and convenient linear reduction function r(<em>x</em>)<em>=</em>a+b<em>x.</em>&nbsp;In order to give a real meaning to the coefficients a and b in the growth rate function, we introduced two parameters:<br>
+
                                         From the beginning to the maximum OD<sub>600</sub> value, it fits the logistic model. The block effect of resource and environment for the growth of yeasts is reflected in the growth rate <em>r</em>, which makes <em>r</em> decrease with the increase in the number of yeasts <em>x</em>. Express <em>r</em> as a function<em> </em>r(<em>x</em>) of <em>x</em>, and take a simple and convenient linear reduction function r(<em>x</em>)<em>=</em>a+b<em>x.</em> In order to give a real meaning to the coefficients a and b in the growth rate function, we introduced two parameters:<br>
 
                                         (1)<strong>Intrinsic growth rate </strong><strong><em>r</em> : </strong><em> r</em> is the growth rate when <em>x</em>=0 (in theory);<br>
 
                                         (1)<strong>Intrinsic growth rate </strong><strong><em>r</em> : </strong><em> r</em> is the growth rate when <em>x</em>=0 (in theory);<br>
                                         (2)<strong>P</strong><strong>opulation capacity </strong><strong><em>x</em></strong><strong><em><sub>m</sub></em> : </strong><em> x</em><em><sub>m</sub></em><em>&nbsp;</em> is the largest yeast amount that can be accommodated by resources and the When <em>x=x</em><em><sub>m</sub></em>, the quantity of yeasts is no longer increasing, that is r(<em>x</em><em><sub>m</sub></em>)<em>=</em>r+b<em>x</em><em><sub>m</sub></em>=0, then b=-<em>r/x</em><em><sub>m</sub></em><em>.</em><br>
+
                                         (2)<strong>P</strong><strong>opulation capacity </strong><strong><em>x</em></strong><strong><em><sub>m</sub></em> : </strong><em> x</em><em><sub>m</sub></em><em> </em> is the largest yeast amount that can be accommodated by resources and the When <em>x=x</em><em><sub>m</sub></em>, the quantity of yeasts is no longer increasing, that is r(<em>x</em><em><sub>m</sub></em>)<em>=</em>r+b<em>x</em><em><sub>m</sub></em>=0, then b=-<em>r/x</em><em><sub>m</sub></em><em>.</em><br>
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em>&nbsp;values in our experiments are shown in the chart below.
+
                                         <em><em>r</em></em>&nbsp;and <em><em>x</em></em><em><sub><em>m</em></sub></em> values in our experiments are shown in the chart below.
 
                                     </p>
 
                                     </p>
 
                                     <table class="table table-bordered table-bashed">
 
                                     <table class="table table-bordered table-bashed">

Revision as of 12:48, 17 October 2018

<!DOCTYPE html> <meta name="format-detection" content="telephone=no"> Team:Tianjin - 2018.igem.org

MODEL

Overview

The models we built included four parts. First, we established a fluorescent protein model to screen out the most suitable fluorescent protein, the main modeling method here is grayscale analysis. Then, for the large amount of measured OD values, we drew the growth curve of yeasts and it fitted logistic model. It described the growth situation of the yeasts after plasmid introduction, and we compare it with yeasts without any foreign plasmid. The growth curve also offers the best measuring point and the best measuring interval. What’s more, we drew the degradation curve of the fluorescent protein, which helps us know different characteristics of the two chosen fluorescent proteins better. Finally, we constructed a model to illustrate the oscillation of KaiA, KaiB and KaiC protein called Mars Model, it explained the reason why the cycle reduced in yeasts nicely. Modeling work integrated with experiments tightly made our project complete and convincing.