Difference between revisions of "Team:NTHU Formosa/Nanobody"

Line 86: Line 86:
 
       <table>
 
       <table>
 
         <tr>
 
         <tr>
           <th>Name</th>
+
           <th><font face="Quicksand">Name</font></th>
           <th>Conventional antibody</th>
+
           <th><font face="Quicksand">Conventional antibody</font></th>
           <th>Nanobody</th>
+
           <th><font face="Quicksand">Nanobody</font></th>
 
         </tr>
 
         </tr>
 
         <tr>
 
         <tr>
           <td>Size</td>
+
           <td><font face="Quicksand">Size</font></td>
           <td>150–160 kDa</td>
+
           <td><font face="Quicksand">150–160 kDa</font></td>
           <td>12-15 kDa</td>
+
           <td><font face="Quicksand">12-15 kDa</font></td>
 
         </tr>
 
         </tr>
  
 
         <tr>
 
         <tr>
           <td>Composition</td>
+
           <td><font face="Quicksand">Composition</font></td>
           <td>Variable domains + heavy chains + light chains</td>
+
           <td><font face="Quicksand">Variable domains + heavy chains + light chains</font></td>
           <td>Variable domain fragments</td>
+
           <td><font face="Quicksand">Variable domain fragments</font></td>
 
         </tr>
 
         </tr>
  
 
         <tr>
 
         <tr>
           <td>Structure(in comparison)</td>
+
           <td><font face="Quicksand">Structure(in comparison)</font></td>
           <td>Complex</td>
+
           <td><font face="Quicksand">Complex</font></td>
           <td>Simple</td>
+
           <td><font face="Quicksand">Simple</font></td>
 
         </tr>
 
         </tr>
  
 
         <tr>
 
         <tr>
           <td>Antigen binding affinity</td>
+
           <td><font face="Quicksand">Antigen binding affinity</font></td>
           <td>High</td>
+
           <td><font face="Quicksand">High</font></td>
           <td>Even better(nano- to- picomolar affinities)</td>
+
           <td><font face="Quicksand">Even better(nano-to-picomolar affinities)</font></td>
 
         </tr>
 
         </tr>
  
 
         <tr>
 
         <tr>
           <td>Thermal Stability</td>
+
           <td><font face="Quicksand">Thermal Stability</font></td>
           <td>65°C for 20 mins diminishes the activities of almost all antibodies</td>
+
           <td><font face="Quicksand">65°C for 20 mins diminishes the activities of almost all antibodies</font></td>
           <td>Highly heat-resistant (functional and active at 70°C or even at 2-hour 90°C heat shock)</td>
+
           <td><font face="Quicksand">Highly heat-resistant (functional and active at 70°C or even at 2-hour 90°C heat shock)</font></td>
 
         </tr>
 
         </tr>
  
 
         <tr>
 
         <tr>
           <td>Price</td>
+
           <td><font face="Quicksand">Price</font></td>
           <td>Varies with the products</td>
+
           <td><font face="Quicksand">Varies with the products</font></td>
           <td>Less expensive than antibodies</td>
+
           <td><font face="Quicksand">Less expensive than antibodies</font></td>
 
         </tr>
 
         </tr>
  

Revision as of 15:09, 17 October 2018




Nanobody


Nanobodies are single variable domain antibody fragments (VHH) derived from heavy-chain only antibodies discovered and identified in at least two types of organisms, camelidae (e.g., camel and llama) and cartilaginous fish (e.g., nurse shark and Wobbegong).

The molecular size of nanobody is about 3 nm (15kDa), 1/10000 of hair diameter. Such property earned it the name, nanobody. They are more hydrophilic than conventional antibodies. They withstand big pH variation. Their small size gives them the ability to penetrate the tissue faster and to reach deeper into the binding pockets of enzymes. Being able to refold after heat denaturation keeps nanobodies functional and active at 70°C or 2-hour 90°C heat shock.

Nanobodies retain full antigen binding capacity and are considerably stable. Conventional antibodies are composed with variable domains along with heavy chains and light chains. When binding with proteins, all three parts of them are necessarily involved. Hence, nanobodies’ comparably simple structure greatly increases their antigen binding affinity. What’s even better is that it’s less costly to make nanobodies than antibodies.

Compared with antibodies, the unique features that nanobodies possess make them ideal for therapeutic and bioengineering tools. As a result, nanobodies are applied in our mechanism.



Name Conventional antibody Nanobody
Size 150–160 kDa 12-15 kDa
Composition Variable domains + heavy chains + light chains Variable domain fragments
Structure(in comparison) Complex Simple
Antigen binding affinity High Even better(nano-to-picomolar affinities)
Thermal Stability 65°C for 20 mins diminishes the activities of almost all antibodies Highly heat-resistant (functional and active at 70°C or even at 2-hour 90°C heat shock)
Price Varies with the products Less expensive than antibodies