Cyclohexane (Talk | contribs) |
|||
Line 191: | Line 191: | ||
<li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li> | <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li> | ||
<li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li> | <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Project"> | ||
+ | <div class="nav-word">Project</div><body> | ||
+ | <div id="container"> | ||
+ | <header> | ||
+ | <div class="wrapper cf"> | ||
+ | <nav id="main-nav"> | ||
+ | <ul class="first-nav"> | ||
+ | <li> | ||
+ | <a href="#" target="_blank">Project</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Description">Description</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Design">Design</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Demonstrate">Demonstrate</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Results">Results</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Parts">Parts</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | </ul> | ||
+ | <ul class="second-nav"> | ||
+ | <li> | ||
+ | <a href="#">Hardware</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Straberry_Pi">Straberry Pi</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Model</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Model">Overview</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><a href="#">Human Practice</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Overview</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/HP/Silver">Silver</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/HP/Gold_Integrated">Gold</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Entrepreneurship">Entrepreneurship</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li><a href="#">Other Works</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/InterLab">InterLab</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Improve">Improve</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Safety">Safety</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Measurement">Measurement</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Notebook</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | <li> | ||
+ | <a href="#">Team</a> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Team">Members</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li> | ||
+ | </ul> | ||
+ | </li> | ||
+ | </ul> | ||
+ | </nav> | ||
+ | <a class="toggle"><span></span></a> | ||
+ | </div> | ||
+ | </header> | ||
+ | </div> | ||
+ | <script type="text/javascript" src="js/hc-mobile-nav.js"></script> | ||
+ | <script src="https://2018.igem.org/Team:XMU-China/js/hc-mobile-nav?action=raw&ctype=text/javascript"></script> | ||
+ | <div class="header"> | ||
+ | <div class="logo"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/b/b5/T--XMU-China--singlelogo.png"> | ||
+ | <img src="https://static.igem.org/mediawiki/2018/3/35/T--XMU-China--iGEM_logo.png"> | ||
+ | </div> | ||
+ | <div class="clear"></div> | ||
+ | <div class="nav"> | ||
+ | <div id="Team"> | ||
+ | <div class="nav-word">Team</div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Team">Members</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Attributions">Attributions</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Judging">Judging</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Notebook"> | ||
+ | <div> | ||
+ | <div class="nav-word">Notebook</a></div> | ||
+ | </div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Notebook">Notebook</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Experiments">Experiments</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Other_Works"> | ||
+ | <div class="nav-word">Other Works</div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/InterLab">InterLab</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Improve">Improve</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Safety">Safety</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Measurement">Measurement</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Human_Practice"> | ||
+ | <div class="nav-word">Human Practice</div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Human_Practices">Overview</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/HP/Silver">Silver</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/HP/Gold_Integrated">Gold</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Public_Engagement">Engagement</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Collaborations">Collaborations</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Entrepreneurship">Entrepreneurship</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Model"> | ||
+ | <div class="nav-word">Model</div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Model">Overview</a></li> | ||
+ | </ul> | ||
+ | </div> | ||
+ | <div id="Hardwork"> | ||
+ | <div class="nav-word">Hardwork</div> | ||
+ | <ul> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware">Overview</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Microfluidic_Chips">Microfluidic chips</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Fluorescenc_Detection">Fluorescence Detection</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Hardware/Straberry_Pi">Straberry Pi</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Applied_Design">Applied Design</a></li> | ||
+ | <li><a href="https://2018.igem.org/Team:XMU-China/Software">APP</a></li> | ||
</ul> | </ul> | ||
</div> | </div> | ||
Line 212: | Line 350: | ||
<div class="Experiments"> | <div class="Experiments"> | ||
<div class="container"> | <div class="container"> | ||
+ | <div class="row"> | ||
+ | <div class="col-md-offset-3 col-md-6"> | ||
+ | <div class="exp_name">Molecular Cloning Hardbook</div> | ||
+ | <div id="accordion"> | ||
+ | <div class="panel"> | ||
+ | <div class="panel-heading" role="tab" id="heading0"> | ||
+ | <h4 class="panel-title"> | ||
+ | <a role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse0" aria-expanded="true" aria-controls="collapse0"> | ||
+ | I. Protocol(SDS-PAGE) | ||
+ | </a> | ||
+ | </h4> | ||
+ | </div> | ||
+ | <div id="collapse0" class="panel-collapse collapse in" role="tabpanel"> | ||
+ | <div class="panel-body"> | ||
+ | <p> <a href="https://static.igem.org/mediawiki/2018/b/b5/T--XMU-China--Molecular_Cloning_Handbook.pdf"><span class="downloadpdf ">Download </span></a> </p> | ||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
+ | |||
+ | </div> | ||
+ | </div> | ||
+ | </div> | ||
<div class="row"> | <div class="row"> | ||
<div class="col-md-offset-3 col-md-6"> | <div class="col-md-offset-3 col-md-6"> | ||
Line 422: | Line 582: | ||
<strong>2. Denature, anneal and renature: <br></strong> | <strong>2. Denature, anneal and renature: <br></strong> | ||
The Tube 2, 3, and 4 are denatured at 95°C for 5 min, then anneal to room temperature. <br> | The Tube 2, 3, and 4 are denatured at 95°C for 5 min, then anneal to room temperature. <br> | ||
− | <strong>3. Wash magnetic beads: <br></strong> | + | <strong> |
+ | <br>3. Wash magnetic beads: <br></strong> | ||
1) Resuspend the beads and vortex for 10 seconds to make them even. <br> | 1) Resuspend the beads and vortex for 10 seconds to make them even. <br> | ||
2) Transfer 75 μL 10 mg / mL beads to 3 200 μL centrifuge tubes (ie 25 μL per tube). <br> | 2) Transfer 75 μL 10 mg / mL beads to 3 200 μL centrifuge tubes (ie 25 μL per tube). <br> | ||
Line 431: | Line 592: | ||
7) Repeat steps 4) to 5). <br> | 7) Repeat steps 4) to 5). <br> | ||
8) Add 50 μL 1×B&W buffer to each tube. <br> | 8) Add 50 μL 1×B&W buffer to each tube. <br> | ||
− | <strong>4. Bind to magnetic beads | + | <strong>4. Bind to magnetic beads <br></strong> |
1) Add 50 μL solution of Tube 2,3 and 4 from step 2 to 50 μL washed beads, respectively. <br> | 1) Add 50 μL solution of Tube 2,3 and 4 from step 2 to 50 μL washed beads, respectively. <br> | ||
2) Vortex for 5 seconds to resuspend. <br> | 2) Vortex for 5 seconds to resuspend. <br> | ||
Line 510: | Line 671: | ||
Note: All tubes should be coated by tin foil properly after distributing. <br> | Note: All tubes should be coated by tin foil properly after distributing. <br> | ||
<strong> 2. Denature, anneal and renature: <br></strong> | <strong> 2. Denature, anneal and renature: <br></strong> | ||
− | All tubes are denatured at 95°C for 5 min, then anneal to room temperature. | + | All tubes are denatured at 95°C for 5 min, then anneal to room temperature. |
<strong> 3. Wash magnetic beads: <br></strong> | <strong> 3. Wash magnetic beads: <br></strong> | ||
1) Resuspend the beads and vortex for 10 seconds to make them even. <br> | 1) Resuspend the beads and vortex for 10 seconds to make them even. <br> | ||
Line 520: | Line 681: | ||
7) Repeat steps 4) to 5). <br> | 7) Repeat steps 4) to 5). <br> | ||
8) Add 50 μL 1×B&W buffer to each tube. <br> | 8) Add 50 μL 1×B&W buffer to each tube. <br> | ||
− | <strong> 4. Bind to magnetic beads | + | <strong> 4. Bind to magnetic beads <br></strong> |
1) Add 50 μL solution of each tube from step 2 to 50 μL washed beads, respectively. <br> | 1) Add 50 μL solution of each tube from step 2 to 50 μL washed beads, respectively. <br> | ||
2) Vortex for 5 seconds to resuspend. <br> | 2) Vortex for 5 seconds to resuspend. <br> | ||
Line 589: | Line 750: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | <strong>1. Pretreatment of LbCpf1-crRNA | + | <strong>1. Pretreatment of LbCpf1-crRNA <br></strong> |
1) Incubate LbCpf1 with crRNA at 37℃ for 30 min to form the LbCpf1-crRNA complex. <br> | 1) Incubate LbCpf1 with crRNA at 37℃ for 30 min to form the LbCpf1-crRNA complex. <br> | ||
2) Dilute the complex by 1×Binding Buffer. <br> | 2) Dilute the complex by 1×Binding Buffer. <br> | ||
Line 595: | Line 756: | ||
1) Add 5 μL of Nuclease-Free Water to a DNaseAlert Substrate single-use tube for each assay. <br> | 1) Add 5 μL of Nuclease-Free Water to a DNaseAlert Substrate single-use tube for each assay. <br> | ||
2) Add 5 μL of 10×DNaseAlert Buffer to each tube. <br> | 2) Add 5 μL of 10×DNaseAlert Buffer to each tube. <br> | ||
− | <strong>3. Make ditributions | + | <strong>3. Make ditributions <br></strong> |
1) Sample Group: LbCas12a-crRNA + Supernatant from competition + DNaseAlert Substrate from step 2. <br> | 1) Sample Group: LbCas12a-crRNA + Supernatant from competition + DNaseAlert Substrate from step 2. <br> | ||
2) Negative Control: LbCas12a-crRNA + DNaseAlert Substrate from step 2. <br> | 2) Negative Control: LbCas12a-crRNA + DNaseAlert Substrate from step 2. <br> | ||
3) Positive Control: DNase I + Supernatant from competition + DNaseAlert Substrate from step 2. <br> | 3) Positive Control: DNase I + Supernatant from competition + DNaseAlert Substrate from step 2. <br> | ||
− | <strong>4. Measure | + | <strong>4. Measure <br></strong> |
Incubate the reaction system at 37℃ for 2 hours, and measure fluorescence intensity once every 30 seconds. <br> | Incubate the reaction system at 37℃ for 2 hours, and measure fluorescence intensity once every 30 seconds. <br> | ||
</p> | </p> | ||
Line 646: | Line 807: | ||
<div id="collapse31" class="panel-collapse collapse in" role="tabpanel"> | <div id="collapse31" class="panel-collapse collapse in" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p> ● 0.45 | + | <p> ● 0.45 m syringe filters <br> |
● LB broth culture <br> | ● LB broth culture <br> | ||
● Optima XE-90 Ultracentrifuge (Beckman Coulter) <br> | ● Optima XE-90 Ultracentrifuge (Beckman Coulter) <br> | ||
Line 665: | Line 826: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | 1 | + | 1. Prepare 100 mL 10×LB broth medium. <br> |
− | 2 | + | 2. Pass the culture through a 0.45 m syringe filter. <br> |
− | 3 | + | 3. Ultracentrifuge each tube for 18 hours at 100,000 g in a Swinging-Bucket rotor to precipitate the biomass. <br> |
− | 4 | + | 4. Recover the supernatant of each tube and dilute them to 1×LB broth culture. <br> |
− | 5 | + | 5. Sterilize the 1×LB broth culture. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 687: | Line 848: | ||
<p> | <p> | ||
● PBS <br> | ● PBS <br> | ||
− | ● 0.45 | + | ● 0.45 m syringe filters <br> |
● OMVs-free LB broth culture <br> | ● OMVs-free LB broth culture <br> | ||
● OptimaTM Max-XP Ultracentrifuge (Beckman Coulter) <br> | ● OptimaTM Max-XP Ultracentrifuge (Beckman Coulter) <br> | ||
Line 706: | Line 867: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | <strong> | + | <strong> a. Bacteria Growth <br></strong> |
− | 1 | + | 1. Inoculate each strain for analysis to 10 mL OMVs-free culture with appropriate antibiotic, and place them on a shaking incubator at 37 °C, 200 rpm. <br> |
− | 2 | + | 2. After about 5 hours of incubation (when the OD600 of each culture was 0.6-0.8), add any necessary inducing agents (IPTG at 0.5 mM or Arabinose at a 0.2% final concentration) into the cultures, and then leave them on the shaking incubator at 37 °C, 200 rpm overnight. <br> |
− | <strong> | + | <strong>b. Cell Extraction <br></strong> |
− | 1 | + | 1. Measure the OD600 of each culture before OMVs harvest. <br> |
− | 2 | + | 2. Centrifuge each culture for 10 min at 1,000 g and then 10 min at 2,000 g in a fixed angle rotor to pellet the biomass. <br> |
− | 3 | + | 3. Recover the supernatants and then pass them through a 0.45 m syringe filter. <br> |
− | <strong> | + | <strong>c. OMVs Purification <br></strong> |
− | 1 | + | 1. Load 10 mL syringe-filtered supernatant into ultracentrifugal tubes, and then ultracentrifuge them at 100,000 g in a TLA120.2 rotor for 17 min at 4 °C。 <br> |
− | 2 | + | 2. Discard the supernatant, add enough PBS buffer and repeat the step 1 above, and then discard the supernatant again. <br> |
− | 3 | + | 3. Add 100 L PBS into the tubes and then pipet up and down for about 200 times. <br> |
− | 4 | + | 4. OMVs are stored at 4 °C until analysis. |
</p> | </p> | ||
</div> | </div> | ||
Line 749: | Line 910: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> ● PBS <br> | <p> ● PBS <br> | ||
− | ● 0.45 | + | ● 0.45 m syringe filters <br> |
● OMVs-free LB broth culture <br> | ● OMVs-free LB broth culture <br> | ||
● Optima XE-90 Ultracentrifuge (Beckman Coulter) <br> | ● Optima XE-90 Ultracentrifuge (Beckman Coulter) <br> | ||
Line 768: | Line 929: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | <strong> | + | <strong>a. Bacterial Growth <br></strong> |
− | 1 | + | 1. Inoculate each strain for analysis into 100 mL OMVs-free culture with appropriate antibiotic, and then place them on a shaking incubator at 37 °C, 200 rpm. <br> |
− | 2 | + | 2. After about 5 hours of incubation (when the OD600 of each culture was 0.6-0.8), add any necessary inducing agents (IPTG at 0.5 mM or Arabinose at a 0.2% final concentration) into the cultures, and leave them on the shaking incubator at 37 °C overnight. <br> |
− | <strong> | + | <strong>b. Cell Extraction <br></strong> |
− | 1 | + | 1. Measure the OD600 of each culture before OMVs harvest. <br> |
− | 2 | + | 2. Centrifuge each culture for 10 min at 1,000 g and then 10 min at 2,000 g in a fixed angle rotor to pellet the biomass. <br> |
− | 3 | + | 3. Recover the supernatants and then pass them through a 0.45 m syringe filter. <br> |
− | <strong> | + | <strong>c. OMVs Purification <br></strong> |
− | 1 | + | 1. Load 100 mL syringe-filtered supernatant into ultracentrifugal tubes, and then ultracentrifuge them at 100,000 g in a Swinging-Bucket rotor for 2 hours at 4 °C。 |
− | 2 | + | 2. Recover the supernatant, repeat the step 1 above, and then discard the supernatant. <br> |
− | 3 | + | 3. Add 100 L PBS into the tube and then pipet up and down for about 200 times. <br> |
− | 4 | + | 4. OMVs are stored at 4 °C until analysis. <br> |
− | <strong> | + | <strong>d. SDS-PAGE <br></strong> |
− | 1 | + | 1. Prepare the 1×Tris-Glycine electrophoresis buffer (2 L) <br> |
− | 2 | + | 2. Add 5×Protein loading buffer (V/V) to the OMVs pellet, and then pipet up and down to mix the sample. <br> |
− | 3 | + | 3. Put the tube in 100 °C water bath for 10 min. <br> |
− | 4 | + | 4. Make the gel for SDS-PAGE according to the manufacture’ s instructions. <br> |
− | 5 | + | 5. Add 10 L protein marker to the first well and add about 25 L samples to other wells. <br> |
− | + | *Tips: You must keep enough sample loaded in every well. You can add 25 L firstly and after the sample pass through the stacking gel, stop the instrument immediately and add 25 L sample again. <br> | |
− | 6 | + | 6. Start the electrophoresis apparatus, the parameters are showed below: <br> |
− | 7 | + | 7. Turn off the instrument, take the gel into a clean plate with deionized water, wash it gently and then discard the water. <br> |
− | 8 | + | 8. Add the Coomassie blue stain into the plate and then heat it to about 50 °C. <br> |
− | 9 | + | 9. Incubate for 30 min on a shaking bed. <br> |
− | 10 | + | 10. Discard the stain and add the destaining solution (acetic acid: ethyl alcohol: deionized water=10: 50: 40, V/V/V), then heat it to about 50 °C. <br> |
− | 11 | + | 11. Incubate for 30 min on a shaking bed. <br> |
− | 12 | + | 12. Repeat step10-11 for 3 times. <br> |
− | 13 | + | 13. Take the gel into the gel formatter to take and save photos. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 811: | Line 972: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> ● PBS <br> | <p> ● PBS <br> | ||
− | ● 0.45 | + | ● 0.45 m syringe filters <br> |
● LB broth culture <br> | ● LB broth culture <br> | ||
● OptimaTM Max-XP Ultracentrifuge (Beckman Coulter) <br> | ● OptimaTM Max-XP Ultracentrifuge (Beckman Coulter) <br> | ||
Line 830: | Line 991: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | <strong> | + | <strong>a. Bacterial Growth <br></strong> |
− | 1 | + | 1. Inoculate each strain for analysis into 100 mL OMVs-free culture with appropriate antibiotic, and then place them on a shaking incubator at 37 °C, 200 rpm. <br> |
− | 2 | + | 2. After about 5 hours of incubation (when the OD600 of each culture was 0.6-0.8), add arabinose at a 0.2% final concentration to initiate the production of siRNA-C/Dbox. <br>After an additional 3 h incubation period, add IPTG to a final concentration of 0.5 mM to initiate the production of L7Ae-SpyCatcher. Incubate the culture at 37 °C and 200 rpm for an additional 18 h. <br> |
− | <strong> | + | <strong>b. Cell Extraction <br></strong> |
− | 1 | + | 1. Measure the OD600 of each culture before OMVs harvest. <br> |
− | 2 | + | 2. Centrifuge each culture for 10 min at 1,000 g and then 10 min at 2,000 g in a fixed angle rotor to pellet the biomass. <br> |
− | 3 | + | 3. Recover the supernatants and then pass them through a 0.45 m syringe filter. <br> |
− | <strong> | + | <strong>c. OMVs Purification <br></strong> |
− | 1 | + | 1. Load 100 mL syringe-filtered supernatant into ultracentrifugal tubes, and then ultracentrifuge them at 100,000 g in a Swinging-Bucket rotor for 2 hours at 4 °C. <br> |
− | 2 | + | 2. Discard the supernatant, add enough PBS buffer and repeat the step one above, then discard the supernatant again. <br> |
− | 3 | + | 3. Add 100 L PBS into the tube and then pipet up and down for about 200 times. <br> |
− | 4 | + | 4. OMVs are stored at 4 °C until analysis. <br> |
− | <strong> | + | <strong>d. RNASelect dye <br></strong> |
The experiment below is designed according to the manufacture’s instruction.<sup>[2]</sup> <br> | The experiment below is designed according to the manufacture’s instruction.<sup>[2]</sup> <br> | ||
− | 1 | + | 1. Prepare a 1 mM DMSO stock solution of the SYTOTM RNASelectTM. <br> |
− | 2 | + | 2. Add 1 L of the dye stock solution to the 100 L OMVs sample and mix them to obtain a final dye concentration of 10 M. Incubate it at 37 °C for 20 min (protect from light). <br> |
− | 3 | + | 3. Remove excess unincorporated dye from the labeled OMVs with ultracentrifugation at 100, 000 g, 17 min, 4 °C. (Twice) <br> |
− | 4 | + | 4. Analyze the efficiency of OMVs labeling using HSFCM. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 903: | Line 1,064: | ||
<div id="collapse22" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse22" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Pipette appropriate imitative plasma solution into the sample chamber;<br> |
− | 2 | + | 2. Gradually increase the motor speed by software and find the critical speed for the second chamber in which the competition reaction happens. <br> |
− | 3 | + | 3. Find a second critical speed for the third chamber-incubation chamber |
</p> | </p> | ||
</div> | </div> | ||
Line 925: | Line 1,086: | ||
● PBS contained Mg2+ (5.0 mmol)<br> | ● PBS contained Mg2+ (5.0 mmol)<br> | ||
● 100× SYBR Green Ⅰ (exited by 488 nm)<br> | ● 100× SYBR Green Ⅰ (exited by 488 nm)<br> | ||
− | ● Microplate Reader<br> | + | ● Microplate Reader (Bio ?)<br> |
</p> | </p> | ||
</div> | </div> | ||
Line 940: | Line 1,101: | ||
<div id="collapse24" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse24" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Mix equivalent aptamer and ssDNA (dissolved in the PBS with Mg2+)<br> |
− | 2 | + | 2. Keep the solution away from light at room temperature/ 37℃ water bath / PCR 95 ℃ for 10 min <br> |
− | 3 | + | 3. Mix 100×SYBR Green Ⅰ with the mixed solution for 20 min at room temperature<br> |
− | 4 | + | 4. Use Microplate Reader to detect the fluorescence of the solution (using the solution contained only aptamer or ssDNA as blank control)<br> |
</p> | </p> | ||
</div> | </div> | ||
Line 977: | Line 1,138: | ||
<div id="collapse26" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse26" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Pour and coat Biotinylated BSA on our device for 10 min; <br> |
− | 2 | + | 2. Wash the remaining Biotinylated BSA with PBS-Tween for 5 min; <br> |
− | 3 | + | 3. Pour and coat Neutravidin on our device for 10 min; <br> |
− | 4 | + | 4. Wash the remaining Neutravidin with PBS-Tween for 5 min; <br> |
− | 5 | + | 5. Pour and coat Combined aptamers-ssDNA on our device for 10 min; <br> |
− | 6 | + | 6. Wash the remaining Neutravidin with PBS-Tween for 5 min. <br> |
− | 7 | + | 7. Detect the fluorescence of washing solution from step 6 to find whether ssDNA is tightly bonded to aptamer. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 1,032: | Line 1,193: | ||
<div id="collapse29" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse29" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Pipette appropriate imitative plasma solution into the sample chamber. <br> |
− | 2 | + | 2. Control the motor speed and make the solution flow into the competitive chamber, and then remain for 20 min at room temperature. <br> |
− | 3 | + | 3. Increase the motor speed and make the solution flow into the detection chamber, and then remain for 10 min at room temperature. <br> |
− | 4 | + | 4. Collect the solution from the last chamber and detect whether there is any fluorescence. <br> |
− | 5 | + | 5. Use the camera of the hardware to find out whether there is any fluorescence and compare the data. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 1,058: | Line 1,219: | ||
<div id="collapse41" class="panel-collapse collapse in" role="tabpanel"> | <div id="collapse41" class="panel-collapse collapse in" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Prepare polyacrylamide gel according to standard protocol. The parameters are showed below: |
<div> | <div> | ||
<table class="tftable" border="1"> | <table class="tftable" border="1"> | ||
Line 1,083: | Line 1,244: | ||
</p> | </p> | ||
<p> | <p> | ||
− | 2 | + | 2. At this point, the gel can either be transferred to a membrane or stained with Coomassie blue (see below).<br> |
− | 3 | + | 3. Place gel in a plastic container, cover over with isopropanol fixing solution and shake at room temperature (RT). For 0.75 mm-thick gels, shake for 10 to 15 min; for 1.5 mm thick gels, shake for 30 to 60 min.<br> |
− | 4 | + | 4. Pour off fixing solution, cover over with Coomassie blue staining solution and shake at RT for 2 h.<br> |
− | 5 | + | 5. Pour off staining solution, wash the gel with 10% acetic acid to destain and shaking at RT overnight. |
<br> | <br> | ||
</p> | </p> | ||
Line 1,106: | Line 1,267: | ||
1) Transform E. coli BL21star (DE3) with pET28a + SAHS plasmids. <br> | 1) Transform E. coli BL21star (DE3) with pET28a + SAHS plasmids. <br> | ||
2) Inoculate each single colon with 10 mL of LB broth culture with kanamycin at 60 mg/mL. <br> | 2) Inoculate each single colon with 10 mL of LB broth culture with kanamycin at 60 mg/mL. <br> | ||
− | 3) Shake each culture at 200 rpm, 37 ˚C overnight | + | 3) Shake each culture at 200 rpm, 37 ˚C overnight <br> |
<strong>2. Induced expression: <br></strong> | <strong>2. Induced expression: <br></strong> | ||
1) After about 3 hours of incubation (when the OD600 reaches to 0.5), add IPTG at a final concentration for 1 mM to induce expression. <br> | 1) After about 3 hours of incubation (when the OD600 reaches to 0.5), add IPTG at a final concentration for 1 mM to induce expression. <br> | ||
Line 1,138: | Line 1,299: | ||
<div class="panel-body"> | <div class="panel-body"> | ||
<p> | <p> | ||
− | 1) Preferably, select single colony of E. coli from fresh LB plate for inoculating a 10 mL 2XYT overnight (O/N) starter culture. Alternatively, streak out frozen glycerol stock of bacterial cells onto LB plate, grow plate O/N, and then select single colony for starter culture. Grow 10 mL starter culture O/N in 37 °C shaker (250 rpm). <br> | + | 1) Step 1. Preferably, select single colony of E. coli from fresh LB plate for inoculating a 10 mL 2XYT overnight (O/N) starter culture. Alternatively, streak out frozen glycerol stock of bacterial cells onto LB plate, grow plate O/N, and then select single colony for starter culture. Grow 10 mL starter culture O/N in 37 °C shaker (250 rpm). <br> |
− | 2) Inoculate 1L of 2XYT media and place culture in 37 °C shaker. Grow cells and measure OD600 every 45 min. When the OD600 equals 0.6-0.9 (log phase growth), remove the cells from the shaker and place on ice. <br> | + | 2) Step 2. Inoculate 1L of 2XYT media and place culture in 37 °C shaker. Grow cells and measure OD600 every 45 min. When the OD600 equals 0.6-0.9 (log phase growth), remove the cells from the shaker and place on ice. <br> |
− | + | NOTE: It is very important to keep the cells at 4°C (or on ice) for the remainder of the procedure. <br> | |
− | 3) Split the 1 L culture into four equal parts by pouring ~250 mL of culture into each chilled 250mL Corning pointed bottle. <br> | + | 3) Step 3. Split the 1 L culture into four equal parts by pouring ~250 mL of culture into each chilled 250mL Corning pointed bottle. <br> |
− | 4) Spin (#1) in GPR centrifuge at 4000 rpm, 25 min at 4 °C. <br> | + | 4) Step 4. Spin (#1) in GPR centrifuge at 4000 rpm, 25 min at 4 °C. <br> |
(if you chose to use the J6/ JS-4.2 rotor (E. Davidson Lab), use 1L bottles , fill half full, spin 4000rpm, 20min, at 4°C.) <br> | (if you chose to use the J6/ JS-4.2 rotor (E. Davidson Lab), use 1L bottles , fill half full, spin 4000rpm, 20min, at 4°C.) <br> | ||
− | 5) Place bottles on ice. Remove supernatant immediately as cell pellet begins to lift off quickly. Gently resuspend each pellet in 200 mL ice-cold dH20. <br> | + | 5) Step 5. Place bottles on ice. Remove supernatant immediately as cell pellet begins to lift off quickly. Gently resuspend each pellet in 200 mL ice-cold dH20. <br> |
− | 6) Spin (#2) in GPR centrifuge at 4000 rpm, 25 min at 4°C. <br> | + | 6) Step 6. Spin (#2) in GPR centrifuge at 4000 rpm, 25 min at 4°C. <br> |
− | 7) Place bottles on ice. Remove supernate. Gently resuspend each pellet in 100ml of ice-cold dH20. <br> | + | 7) Step 7. Place bottles on ice. Remove supernate. Gently resuspend each pellet in 100ml of ice-cold dH20. <br> |
− | 8) Spin (#3) in GPR centrifuge at 4000rpm, 25min at 4°C. <br> | + | 8) Step 8. Spin (#3) in GPR centrifuge at 4000rpm, 25min at 4°C. <br> |
− | 9) Place bottles on ice. Remove supernatant. Gently resuspend each pellet in 20mL ice-cold 10% glycerol. For each pair of 250 mL Corning bottles, transfer both 20 mL cell suspension into one chilled 50 mL conical tube- therefore you should end up with two 50 mL conical tubes on ice where each tube contains ~40 mL of cells in 10% glycerol. <br> | + | 9) Step 9. Place bottles on ice. Remove supernatant. Gently resuspend each pellet in 20mL ice-cold 10% glycerol. For each pair of 250 mL Corning bottles, transfer both 20 mL cell suspension into one chilled 50 mL conical tube- therefore you should end up with two 50 mL conical tubes on ice where each tube contains ~40 mL of cells in 10% glycerol. <br> |
− | 10) Spin (#4) in GPR centrifuge at 4000 rpm, 10 min at 4 °C. <br> | + | 10) Step 10. Spin (#4) in GPR centrifuge at 4000 rpm, 10 min at 4 °C. <br> |
− | 11) Place tubes on ice. Remove supernatant. Gently resuspend each cell pellet in 1 mL of ice-cold 10% glycerol. Final OD600 of resuspended cells » 200-250. <br> | + | 11) Step 11. Place tubes on ice. Remove supernatant. Gently resuspend each cell pellet in 1 mL of ice-cold 10% glycerol. Final OD600 of resuspended cells » 200-250. <br> |
− | 12) With cell suspensions on ice, prepared 70l aliquots of cells in pre-chilled 1.5 mL eppendorf tubes. Snap freeze tubes containing cells in liquid N2. Store frozen cells at -80 °C. <br> | + | 12) Step 12. With cell suspensions on ice, prepared 70l aliquots of cells in pre-chilled 1.5 mL eppendorf tubes. Snap freeze tubes containing cells in liquid N2. Store frozen cells at -80 °C. <br> |
− | + | NOTE: liquid N2 very hazardous- use caution and don't contact N2 directly! <br> | |
<br> | <br> | ||
</p> | </p> | ||
Line 1,168: | Line 1,329: | ||
<div id="collapse44" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse44" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Thaw electrocompetent cells on ice. <br> |
− | 2 | + | 2. Transfer 50 mL of electrocompetent cells to a pre-chilled electroporation cuvette with 1 mm gap. <br> |
− | 3 | + | 3. Add 1 mL of the assembly product to electrocompetent cells. <br> |
− | 4 | + | 4. Mix gently by pipetting up and down. <br> |
− | 5 | + | 5. Once DNA is added to the cells, electroporation can be carried out immediately. It is not necessary to incubate DNA with cells. <br> |
− | 6 | + | 6. Add 950 mL of room-temperature SOC media to the cuvette immediately after electroporation. <br> |
− | 7 | + | 7. Place the tube at 37 °C for 60 minutes. Shake vigorously (250 rpm) or rotate. <br> |
− | 8 | + | 8. Warm selection plates to 37 °C. <br> |
− | 9 | + | 9. Spread 100 mL of the cells onto the plates. <br> |
− | 10 | + | 10. Incubate overnight at 37 °C. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 1,186: | Line 1,347: | ||
<h4 class="panel-title"> | <h4 class="panel-title"> | ||
<a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse45" aria-expanded="false" aria-controls="collapse45"> | <a class="collapsed" role="button" data-toggle="collapse" data-parent="#accordion" href="#collapse45" aria-expanded="false" aria-controls="collapse45"> | ||
− | V. Homologous recombination | + | V. Homologous recombination: |
+ | |||
</a> | </a> | ||
</h4> | </h4> | ||
Line 1,192: | Line 1,354: | ||
<div id="collapse45" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse45" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Transfer the plasmid pKD46 into E.coli DH5α, and Incubate at 30° for 12h. <br> |
− | 2 | + | 2. Make electro-competent cell with E.coli DH5α contains pKD46. <br> |
− | 3 | + | 3. PCR amplification of CAHS fragments, and add two segments homologous arm. <br> |
− | 4 | + | 4. DNA gel electrophoresis and gel extraction and purification. <br> |
− | 5 | + | 5. Transfer the fragments into the electro-competent cell. <br> |
− | 6 | + | 6. Add 100 mM L-Arabinose, then induced for 90min at 37°. <br> |
− | 7 | + | 7. Activate for 2h in 37° shaking incubator. <br> |
− | 8 | + | 8. Add 1 M IPTG to make the final concentration to be 1 mM. <br> |
− | 9 | + | 9. Add 250 L of the bacteria solution to plate. <br> |
− | 10 | + | 10. Incubate at 37°C. <br> |
− | 11 | + | 11. That the colony’s color turning to be red is regarded as success. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 1,217: | Line 1,379: | ||
<div id="collapse46" class="panel-collapse collapse" role="tabpanel"> | <div id="collapse46" class="panel-collapse collapse" role="tabpanel"> | ||
<div class="panel-body"> | <div class="panel-body"> | ||
− | <p>1 | + | <p>1. Set up the following reaction on ice: <br> |
− | 2 | + | 2. Incubate samples in a thermocycler at 50 °C for 15 minutes when 2 or 3 fragments are being assembled or 60 minutes when 4-6 fragments are being assembled. Following incubation, store samples on ice or at –20 °C for subsequent transformation. <br> |
Note: Extended incubation up to 60 minutes may help to improve assembly efficiency in some cases (for further details see FAQ section). <br> | Note: Extended incubation up to 60 minutes may help to improve assembly efficiency in some cases (for further details see FAQ section). <br> | ||
− | 3 | + | 3. Transform NEB 5-alpha Competent E. coli cells (provided with the kit) with 2 L of the assembly reaction, following the transformation protocol. <br> |
</p> | </p> | ||
</div> | </div> | ||
Line 1,262: | Line 1,424: | ||
</div> | </div> | ||
</body> | </body> | ||
− | |||
</html> | </html> |
Revision as of 08:32, 7 October 2018